PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A kinetostatics-based study of uniqueness of reactions and drives in robotics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Reaction and driving forces may be non-unique in many robotic systems. This may pose a problem during robot design or its control synthesis. Hence, it is useful to detect which reaction or actuation forces are non-unique. Previously developed methods are designed for reactions uniqueness analysis only. These methods studied the constraint Jacobian matrix. The kinetostatics-based approach, presented in this paper, enables the simultaneous study of reactions and driving forces uniqueness. It allows the application of the criteria derived from the concepts of linear algebra, e.g. direct sum or nullspace. In this paper only the nullspace method is presented. Moreover, in order to illustrate the approach, five examples are provided.
Słowa kluczowe
Twórcy
autor
  • Division of Theory of Machines and Robots, Institute of Aeronautics and Applied Mechanics, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Nowowiejska 24, 00–665 Warsaw, Poland
autor
  • Division of Theory of Machines and Robots, Institute of Aeronautics and Applied Mechanics, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Nowowiejska 24, 00–665 Warsaw, Poland
Bibliografia
  • [1] R. G. Budynas and J. K. Nisbett, Shigley’s Mechanical Engineering Design, Ninth Edition, McGrawHill, 2011.
  • [2] S. Chiaverini, G. Oriolo, and I. D. Walker. “Kinematically Redundant Manipulators”. In: B. Siciliano and O. Khatib, eds., Springer Handbook of Robotics. Springer-Verlag Berlin Heidelberg, 2008, DOI: 10.1007/978-3-540-30301-5_12.
  • [3] E. S. Conkur and R. Buckingham, “Clarifying the defiinition of redundancy as used in robotics”,Robotica, vol. 15, no. 5, 1997, 583 – 586, DOI: 10.1017/S0263574797000672.
  • [4] J. G. de Jalón and M. D. Gutiérrez-López, “Multibody dynamics with redundant constraints and singular mass matrix: existence, uniqueness, and determination of solutions for accelerations and constraint forces”, Multibody System Dynamics, vol. 30, no. 3, 2013, 311–341, DOI: 10.1007/s11044-013-9358-7.
  • [5] R. Featherstone and D. E. Orin. “Dynamics”. In: B. Siciliano and O. Khatib, eds., Springer Handbook of Robotics. Springer-Verlag Berlin Heidelberg, 2008, DOI: 10.1007/978-3-540-30301-5_3.
  • [6] J. Frączek and M. Wojtyra, Kinematyka układów wieloczłonowych. Metody obliczeniowe, Wydawnictwa Naukowo-Techniczne: Warszawa, 2008.
  • [7] J. Frączek and M. Wojtyra, “On the unique solvability of a direct dynamics problem for me29 Journal of Automation, Mobile Robotics & Intelligent Systems VOLUME 11, N◦ 2 2017 chanisms with redundant constraints and Coulomb friction in joints”, Mechanism and Machine Theory, vol. 46, no. 3, 2011, 312–334, DOI:10.1016/j.mechmachtheory.2010.11.003.
  • [8] L. Ganovski, P. Fisette, and J. C. Samin, “Piecewise Overactuation of Parallel Mechanisms Following Singular Trajectories: Modeling, Simulation and Control”, Multibody System Dynamics, vol. 12, no. 4, 2004, 317 – 343, DOI: 10.1007/s11044-004-2532-1.
  • [9] A. Müller, “A conservative elimination procedure for permanently redundant closure constraints in MBS-models with relative coordinates”, Multibody System Dynamics, vol. 16, no. 4, 2006, 309–330, DOI: 10.1007/s11044-006-9028-0.
  • [10] M. Pękal and J. Frączek. “Badanie jednoznaczności reakcji i napędów w robotyce metodą kinetostatyki”.In: K. Tchoń and C. Zieliński, eds., Postępy robotyki. Tom 1, Prace Naukowe Politechniki Warszawskiej. Elektronika. z. 195. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2016, Conference: 14. Krajowa Konferencja Robotyki (14. KKR), Polanica Zdrój, Poland, September 14th–18th 2016.
  • [11] M. Pękal and J. Frączek, “Comparison of natural complement formulations for multibody dynamics”, Journal of Theoretical and Applied Mechanics, vol. 54, no. 4, 2016, 1391–1404, DOI: 10.15632/jtam-pl.54.4.1391.
  • [12] M. Pękal and J. Frączek, “Comparison of selected formulations for multibody system dynamics with redundant constraints”, Archive of Mechanical Engineering, vol. 63, no. 1, 2016, 93–112, DOI: 10.1515/meceng-2016-0005.
  • [13] M. Pękal and J. Frączek. “Kinetostatic analysis of rigid multibody systems with redundant constraints”. In: The Fourth Joint International Conference on Multibody System Dynamics (IMSD 2016). Montréal, Canada, May 29th–June 2nd 2016, Extended Abstract Published.
  • [14] M. Pękal, J. Frączek, and P. Tomulik. “Solvability of reactions and inverse dynamics problem for complex kinematic chains”. In: The 21st International Conference on Methods and Models in Automation and Robotics (MMAR 2016). Międzyzdroje, Poland, August 29th–September 1st 2016, DOI: 10.1109/MMAR.2016.7575078.
  • [15] G. Strang, Introduction to Linear Algebra, Fourth Edition, Wellesley-Cambridge Press, 2009.
  • [16] G. Strang and K. Borre, Linear Algebra, Geodesy, and GPS, Wellesley–Cambridge Press, 1997.
  • [17] null (function’s reference page: MATLAB > Mathematics > Linear Algebra > Matrix Analysis), MATLAB® help.
  • [18] L.-W. Tsai, Robot Analysis: The Mechanics of Serial and Parallel Manipulators, Wiley–Interscience,1999.
  • [19] M. Wojtyra, “Joint Reaction Forces in Multibody Systems with Redundant Constraints”, Multibody System Dynamics, vol. 14, no. 1, 2005, 23–46, DOI:10.1007/s11044-005-5967-0.
  • [20] M. Wojtyra, “Joint reactions in rigid body mechanisms with dependent constraints”, Mechanism and Machine Theory, vol. 44, no. 12, 2009, 2265–2278, DOI:10.1016/j.mechmachtheory.2009.07.008.
  • [21] M. Wojtyra and J. Frączek, “Joint reactions in rigid or flexible body mechanisms with redundant constraints”, Bulletin of the Polish Academy of Sciences Technical Sciences, vol. 60, no. 3, 2012, 617–626, DOI: 10.2478/v10175-012-0073-y.
  • [22] M. Wojtyra and J. Frączek, “Comparison of Selected Methods of Handling Redundant Constraints in Multibody Systems Simulations”, Journal of Computational and Nonlinear Dynamics, vol. 8, no. 2, 2013, 021007 (1–9), DOI:10.1115/1.4006958.
  • [23] M. Wojtyra and J. Frączek, “Solvability of reactions in rigid multibody systems with redundant nonholonomic constraints”, Multibody System Dynamics, vol. 30, no. 2, 2013, 153–171,DOI: 10.1007/s11044-013-9352-0.
  • [24] J. Wu, J. Wang, T. Li, and L. Wang, “Performance Analysis and Application of a Redundantly Actuated Parallel Manipulator for Milling”, Journal of Intelligent and Robotic Systems, vol. 50, no. 2, 2007, 163 – 180, DOI: 10.1007/s10846-007-9159-4.
  • [25] J. Wu, J. Wang, L. Wang, and T. Li, “Dynamics and control of a planar 3-DOF parallel manipulator with actuation redundancy”, Mechanism and Machine Theory, vol. 44, no. 4, 2009, 835 – 849, DOI: 10.1016/j.mechmachtheory.2008.04.002.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d5b5ff1b-46ec-4afe-ad56-7dea18dcdd25
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.