PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowania systemów uwalniania wankomycyny do regeneracji tkanki kostnej

Identyfikatory
Warianty tytułu
EN
Applications of vancomycin release systems for bone regeneration
Języki publikacji
PL
Abstrakty
PL
Wankomycyna (VA) jest szeroko stosowanym glikopeptydowym antybiotykiem, o bardzo skutecznym działaniu bakteriobójczym/bakteriostatycznym. Jest stosowana profilaktycznie przed operacjami, po zabiegach lub w ich trakcie wraz z wszczepianym implantem celem zahamowania namnażania się bakterii i zapobiegania infekcji. Pomimo skutecznego działania bakteriobójczego, nieostrożne i niewłaściwe podanie antybiotyku może skutkować toksycznym działaniem prowadzącym do stałych uszkodzeń w ciele. W przeglądzie przedstawiono przykłady połączenia VA z implantami, które pozwalają na precyzyjne dostarczenie leku oraz kontrolę nad czasem jego uwalniania, wspomagając tym samym regenerację tkanki kostnej
EN
Vancomycin (VA) is a widely used glycopeptide antibiotic with highly effective bactericidal/bacteriostatic activity. It is used prophylactically before, after, or during surgery along with an implant to inhibit bacterial proliferation and prevent infection. Despite its effective antibacterial effect, careless and inappropriate administration of the antibiotic can result in toxicity leading to permanent damage in the body. The review provides examples of combining VA with implants that allow precise delivery of the drug and control over the timing of its release, thereby aiding bone tissue regeneration
Rocznik
Strony
18--24
Opis fizyczny
Bibliogr. 42 poz., rys.
Twórcy
  • Katedra Inżynierii Materiałowej, Wydział Inżynierii Materiałowej i Fizyki, Politechnika Krakowska
  • Katedra Inżynierii Materiałowej, Wydział Inżynierii Materiałowej i Fizyki, Politechnika Krakowska
Bibliografia
  • [1] J. Braun, S. Eckes, P.M. Rommens, K. Schmitz, D. Nickel, U. Ritz: Toxic effect of vancomycin on viability and functionality of different cells involved in tissue regeneration. Antibiotics 5 (9) (2020) 1-15, doi: 10.3390/antibiotics9050238.
  • [2] R.H. Deurenberg, E.E. Stobberingh: The evolution of Staphylococcus aureus. Infect. Genet. Evol. 6 (8) (2008) 747-763, doi: 10.1016/j.meegid.2008.07.007.
  • [3] L.B. Rice: Antimicrobial resistance in gram-positive bacteria. Am. J. Infect. Control 5 (34) (2006) 11-19, doi: 10.1016/j. ajic.2006.05.220.
  • [4] A. Srinivasan, J.D. Dick, T.M. Perl: Vancomycin resistance in Staphylococci. Clin. Microbiol. Rev. 3 (15) (2002) 430-438, doi: 10.1128/CMR.15.3.430-438.2002.
  • [5] M. Chen, Y. Li, W.X. Hou, D.Y. Peng, J.K. Li, H.X. Zhang: The antibacterial effect, biocompatibility, and osteogenesis of vancomycin-nanodiamond composite scaffold for infected bone defects. Int. J. Nanomed. (18) (2023) 1365-1380, doi: 10.2147/IJN.S397316.
  • [6] J. Ye, X. Chen: Current promising strategies against antibiotic-resistant bacterial infections. Antibiotics 1 (12) (2023), doi: 10.3390/antibiotics12010067.
  • [7] W. Han, L. Zhang, L.J. Yu, J.Q. Wang: Effect of local delivery of vancomycin and tobramycin on bone regeneration. Orthop. Surg. 5 (13) (2021) 1654-1661, doi: 10.1111/os.13020.
  • [8] S. Sivagnanam, D. Deleu: Red man syndrome. Crit. Care 2 (7) (2003) 119-120, doi: 10.1186/cc1871.
  • [9] M. Paula, I.G. Júlio, J.B. Rainer, A. Ferraz: Vancomycin infusion reaction: case report. Rev. Med. (São Paulo) 1 (102) (2023) 1-4, doi: http://dx.doi.org/10.11606/issn.1679-9836. v102i1e-199049.
  • [10] A. Juyal, G. Khurana, R. Maheshwari: Red man syndrome. An unusual complication of vancomycin beads. Bangladesh J. Med. Sci. 3 (14) (2015) 290-291, doi: 10.3329/bjms. v14i3.17955.
  • [11] J. Lee, M. Lee, A. Mohan, A.S. Salacata: Vancomycin flushing reaction induced stress cardiomyopathy. J. Am. Coll. Cardiol. 8 (81) (2023) 2603, 2023, doi: 10.1016/s0735-1097(23)03047- 4.
  • [12] S. Rahmani, K. Naraki, A. Roohbakhsh, A.W. Hayes, G. Karimi: The protective effects of rutin on the liver, kidneys, and heart by counteracting organ toxicity caused by synthetic and natural compounds. Food Sci. Nutr. 1 (11) (2023) 39-56, 2023, doi: 10.1002/fsn3.3041.
  • [13] S.J. Park et al.: Evaluation of risk factors for vancomycin-induced nephrotoxicity. Int. J. Clin. Pharm. 5 (40) (2018) 1328-1334, doi: 10.1007/s11096-018-0634-8.
  • [14] A. Gupta, M. Biyani, A. Khaira: Vancomycin nephrotoxicity. Myths and facts. Neth. J. Med. 9 (69) (2011) 379-383.
  • [15] M.A. Perazella: Vancomycin should be considered a nephrotoxic antimicrobial agent. Commentary. Kidney360 9 (3) (2022) 1491-1493, doi: 10.34067/kid.0008112021.
  • [16] P.R. Ingram, D.C. Lye, P.A. Tambyah, W.P. Goh, V.H. Tam, D.A. Fisher: Risk factors for nephrotoxicity associated with continuous vancomycin infusion in outpatient parenteral antibiotic therapy. J. Antimicrob. Chemother. 1 (62) (2008) 168-171, doi: 10.1093/jac/dkn080.
  • [17] S.H. Rao, B. Harini, R.P.K. Shadamarshan, K. Balagangadharan, N. Selvamurugan: Natural and synthetic polymers/bioceramics/bioactive compounds-mediated cell signalling in bone tissue engineering. Int. J. Biol. Macromol. (110) (2018) 88–96, doi: 10.1016/j.ijbiomac.2017.09.029.
  • [18] M. Toledano-Osorio, C. Vallecillo, M. Vallecillo-Rivas, F.J. Manzano-Moreno, R. Osorio: Antibiotic-loaded polymeric barrier membranes for guided bone/tissue regeneration. A mini-review. Polymers (Basel) 4 (14) (2022) 1-11, doi: 10.3390/ polym14040840.
  • [19] S. Sharma, P. Sudhakara, J. Singh, R.A. Ilyas, M.R.M. Asyraf, M.R. Razman: Critical review of biodegradable and bioactive polymer composites for bone tissue engineering and drug delivery applications. Polymers (Basel) 16 (13) (2021), doi: 10.3390/polym13162623.
  • [20] S.P. Adithya, D.S. Sidharthan, R. Abhinandan, K. Balagan-Gadharan, N. Selvamurugan: Nanosheets-incorporated bio-composites containing natural and synthetic polymers/ ceramics for bone tissue engineering. Int. J. Biol. Macromol. (164) (2020) 1960-1972, doi: 10.1016/j.ijbiomac.2020.08.053.
  • [21] A.M. Le Ray et al.: Vancomycin encapsulation in biodegradable poly(ε-caprolactone) microparticles for bone implantation. Influence of the formulation process on size, drug loading, in vitro release and cytocompatibility. Biomaterials 3 (24) (2003) 443-449, doi: 10.1016/S0142-9612(02)00357-5.
  • [22] P. Thamvasupong, K. Viravaidya-Pasuwat: Controlled release mechanism of vancomycin from double-layer poly-L-lactic acid-coated implants for prevention of bacterial infection. Polymers (Basel) 17 (14) (2022), doi: 10.3390/polym14173493.
  • [23] Y. Zhao et al.: Antibacterial vancomycin@ZIF-8 loaded PVA nanofiber membrane for infected bone repair. Int. J. Mol. Sci. 10 (23) (2022), doi: 10.3390/ijms23105629.
  • [24] J. Li, R. Tang, P. Zhang, M. Yuan, H. Li, M. Yuan: The preparation and characterization of chitooligosaccharide-polylactide polymers, and in vitro release of microspheres loaded with vancomycin. J. Funct. Biomater. 3 (13) (2022) doi: 10.3390/ jfb13030113.
  • [25] J.M. Unagolla, A.C. Jayasuriya: Drug transport mechanisms and in vitro release kinetics of vancomycin encapsulated chitosan-alginate polyelectrolyte microparticles as a controlled drug delivery system. Eur. J. Pharm. Sci. (114) (2018) 199-209, doi: 10.1016/j.ejps.2017.12.012.
  • [26] Z. Aslani et al.: Antibacterial activity and cell responses of vancomycin-loaded alginate coating on ZSM-5 scaffold for bone tissue engineering applications. Materials (Basel) 14 (15) (2022) doi: 10.3390/ma15144786.
  • [27] J. Gao et al.: A biodegradable antibiotic-eluting PLGA nanofiber-loaded deproteinized bone for treatment of infected rabbit bone defects. J. Biomater. Appl. 2 (31) (2016) 241–249, doi: 10.1177/0885328216654424.
  • [28] S. Wei et al.: Vancomycin-impregnated electrospun polycaprolactone (PCL) membrane for the treatment of infected bone defects. An animal study. J. Biomater. Appl. 9 (32) (2018) 1187-1196, doi: 10.1177/0885328218754462.
  • [29] K. Pal, A.K. Banthia, D.K. Majumdar: Polymeric hydrogels. Characterization and biomedical applications. Des. Monomers Polym. 3 (12) (2009) 197-220, doi: 10.1163/156855509X436030.
  • [30] Q. Chen et al.: Intelligent design and medical applications of antimicrobial hydrogels. Colloids Interface Sci. Commun. (53) (2023) 100696, doi: 10.1016/j.colcom.2023.100696.
  • [31] A. Rastegari, F. Hasanshakir, Z. Mohammadi, F. Saadatpor, F. Moraffah: A chitosan based hydrogel containing zinc oxide nanoparticles as a carrier for improving antibacterial activity and controlling the release of antibiotics. Authorea (2023) 1-10.
  • [32] J. Guo et al.: Advanced hydrogel systems for mandibular reconstruction. Bioact. Mater. (21) (2023) 175-193, doi: 10.1016/j.bioactmat.2022.08.001.
  • [33] K.A. Luetchford, J.B. Chaudhuri, P.A. De Bank: Silk fibroin/ gelatin microcarriers as scaffolds for bone tissue engineering. Mater. Sci. Eng. C (106) (2020) doi: 10.1016/j. msec.2019.110116.
  • [34] F. Avani, S. Damoogh, F. Mottaghitalab, A. Karkhaneh, M. Farokhi: Vancomycin loaded halloysite nanotubes embedded in silk fibroin hydrogel applicable for bone tissue engineering. Int. J. Polym. Mater. Polym. Biomater. 1 (69) (2020) 32-43, 2020, doi: 10.1080/00914037.2019.1616201.
  • [35] F. Ahadi, S. Khorshidi, A. Karkhaneh: A hydrogel/fiber scaffold based on silk fibroin/oxidized pectin with sustainable release of vancomycin hydrochloride. Eur. Polym. J. no. June (118) (2019) 265-274, 2019, doi: 10.1016/j.eurpolymj.2019.06.001.
  • [36] Q. Dong et al.: Design of functional vancomycin-embedded bio-derived extracellular matrix hydrogels for repairing infectious bone defects. Nanotechnol. Rev. 1 (12) (2023) doi: 10.1515/ntrev-2022-0524.
  • [37] H.R. Lin, Y.J. Yen: Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering. Preparation, characterization, and in vitro studies. J. Biomed. Mater. Res. – Part B Appl. Biomater. 1 (71) (2004) 52-65, doi: 10.1002/ jbm.b.30065.
  • [38] C.V.M. Rodrigues et al.: Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering. Biomaterials 27 (24) (2003) 4987-4997, doi: 10.1016/ S0142-9612(03)00410-1.
  • [39] M. Mulazzi et al.: Medicated hydroxyapatite/collagen hybrid scaffolds for bone regeneration and local antimicrobial therapy to prevent bone infections. Pharmaceutics 7 (13) (2021), doi: 10.3390/pharmaceutics13071090.
  • [40] Z. Cao, D. Jiang, L. Yan, J. Wu: In vitro and in vivo osteogenic activity of the novel vancomycin-loaded bone-like hydroxyapatite/poly(amino acid) scaffold. J. Biomater. Appl. 10 (30) (2016) 1566–1577, doi: 10.1177/0885328215623735.
  • [41] J. Le Jiang et al.: Vancomycin-loaded nano-hydroxyapatite pellets to treat MRSA-induced chronic osteomyelitis with bone defect in rabbits. Inflamm. Res. 3 (61) (2012) 207–215, doi: 10.1007/s00011-011-0402-x.
  • [42] J. Li et al.: Dual-nozzle 3D printed nano-hydroxyapatite scaffold loaded with vancomycin sustained-release microspheres for enhancing bone regeneration. Int. J. Nanomedicine (18) (2023) 307–322, doi: 10.2147/IJN.S394366.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d45110bb-7cb2-4aff-aad2-c325bd9ce78f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.