PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Risk assessment and analysis in toy production: a case study of plastic block manufacturing using Pareto-Lorenz and FMEA methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a comprehensive risk assessment and analysis in the production of plastic toys - specifically building blocks - conducted using the Pareto-Lorenz diagram and the Failure Mode and Effects Analysis (FMEA) method. The study addresses the challenges faced by toy manufacturers, particularly in the small and medium-sized enterprise (SME) sector, in meeting stringent safety and quality requirements for children’s toys. The Pareto-Lorenz diagram identified the most frequent nonconformities in the production process, revealing that small protruding parts and sharp edges accounted for 71.65% of all detected defects. The FMEA method, applied in a novel approach, allowed for the prioritization of risks and the identification of key areas for improvement, such as material selection, injection molding parameters, and quality control processes. Based on the findings, the study proposes targeted optimization measures to enhance product quality, safety, and production efficiency. These results contribute to the body of knowledge on risk management in toy manufacturing and offer practical solutions for improving compliance with industry standards.
Wydawca
Rocznik
Strony
330--338
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Czestochowa University of Technology, Department of Production Engineering and Safety, Armii Krajowej 19B, 42-201 Czestochowa, Poland
  • Czestochowa University of Technology, Department of Production Engineering and Safety, Armii Krajowej 19B, 42-201 Czestochowa, Poland
Bibliografia
  • 1.AIAG and VDA FMEA Handbook, 2019. Design FMEA and process FMEA. Supplemental FMEA for monitoring and system response. 1. ed. USA: AIAG and VDA.
  • 2.Bezpieczeństwo Zabawek w UE. Praktyczny przewodnik przedstawiający obowiązki prawne producentów, importerów i dystrybutorów.
  • 3.Czerwińska, K., Piwowarczyk, A., 2022. The use of combined quality management instruments to analyze the causes of non-conformities in the castings of the cover of the rail vehicle bearing housing, Production Engineering Archives, 28 (3), 289-294.
  • 4.Furman J., Małysa T., 2023. The role of visual management in the organization of safework in production companies, Production Engineering Archives, 29(2), 195-200.
  • 5.Jagusiak-Kocik, M., 2023.Analysis and Assessment of Threats Existing in Selected Small Sports and Recreational Infrastructure Facilities Using Quality Management Tools. System Safety: Human - Technical Facility - Environment, 5(1), 103-111.
  • 6.Jagusiak-Kocik, M. 2023. Identification and Improvement of Processes Using Selected Quality Tools: a Case Study. Scientific Journals of the Maritime University of Szczecin, 75 (147), 59- 67.
  • 7.Knop, K., Ulewicz, R., 2022. Solving Critical Quality Problems by Detecting and Eliminating their Root Causes - Case-Study from the Automotive Industry, Materials Research Proceedings, 24, 181-188.
  • 8.Mielczarek, K., Krynke M., 2018. Plastic production machinery - The evaluation of effectiveness, Production Engineering Archives, 18(18), 42-45, DOI: 10.30657/pea.2018.18.07.
  • 9.Nedeliaková E., Hranický M., Valla M., 2021. Risk identification methodology regarding the safety and quality of railway services, Production Engineering Archives, 28(1), 21-29.
  • 10.Pacana, A., Czerwińska, K., 2020. Improving the quality level in the automotive industry, Production Engineering Archives, 26(4), 162-166.
  • 11.Pacana, A., Czerwińska, K., 2019. Analysis of the causes of control panel inconsistencies in the gravitational casting process by means of quality management instruments, Production Engineering Archives, 25, 12-16.
  • 12. Pacana, A., Siwiec, D., Ulewicz, R., Ulewicz, M. 2024. A Novelty Model Employing the Quality Life Cycle Assessment (QLCA) Indicator and Frameworks for Selecting Qualitative and Environmental Aspects for Sustainable Product Development. Sustainability 2024, 16, 7821.
  • 13.Plinta, D., Golińska, E., Dulina L., 2021. Practical application of the new approach to FMEA method according to AIAG and VDA reference manual, Communications - Scientific Letters of the University of Zilina, 23 (4), 325-335.
  • 14.Rosyidi, C.N., Permatasari, H.A.I., Laksono, P.W., 2024. An integrated optimization model for procurement and production lot sizing and scheduling problems, Production Engineering Archives, (30)2, 155-165.
  • 15.Rozporządzenie Ministra Rozwoju i Finansów z dn. 20.10.2016 w sprawie wymagań dla zabawek.
  • 16.Sharma, K., Srivastava, S., 2018. Failure Mode and Effect Analysis (FMEA) Implementation: A Literature Review, Journal of Advance Research in Aeronautics and Space Science, 5, 1&2, 1- 17.
  • 17.Shuyuan, J., Fuqiu, L, Jinjing, W., Meinan, L., 2014. The effectiveness of the FMEA technology in the process of the aerospace product development, Safety and Reliability: Methodology and Applications, CRC Press, 151-155.
  • 18.Siwiec, D., Pacana, A., 2021. Method of improve the level of product quality, Production Engineering Archives, 27(1), 1-7.
  • 19.Ulewicz, R., 2014. Practical application of quality tools in the cast iron foundry, Manufacturing Technology, 14(1), 104-111.
  • 20.Wolniak, R., 2019. Problems of use of FMEA method in industrial enterprise, Production Engineering Archives, 23, 12-17.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d19e1376-fb23-479c-a2e9-d7d805f1e503
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.