PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biodiversity and antibiotic resistance of bacteria isolated from tap water in Wrocław, Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Microbial contamination and biodiversity were determined for the drinking water samples collected from selected points of the water supply system in Wroclaw, Poland. All tested samples met the requirements of Polish law, i.e., the Regulation of the Minister of Health. However, the antibiotic resistant bacteria were found. The correlation between the distance of sampling points from water treatment plants and their microbial contamination was not established. Nevertheless, the Na Grobli treatment plant seemed to produce water of higher microbial quality than the Mokry Dwor treatment plant at the moment of sampling. The identification of representative isolates was performed with 16S rRNA gene sequencing and MALDI-TOF mass spectrometry and the results of these two methods were compared, indicating some discrepancies. Nevertheless, bacteria dwelling in drinking water in Wroclaw belonged to the phyla Actinobacteria, Proteobacteria (alpha-, beta-, gamma-Proteobacteria) and Firmicutes . The determination of antibiotic resistance profiles showed that 12 from 17 tested isolates revealed resistance to at least one antibiotic and two strains were multi-drug-resistant.
Rocznik
Strony
85--98
Opis fizyczny
Bibliogr. 26 poz., tab.
Twórcy
  • Wrocław University of Science and Technology, Faculty of Environmental Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
  • Wrocław University of Science and Technology, Faculty of Environmental Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
  • Wrocław University of Science and Technology, Faculty of Environmental Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] GRABIŃSKA-ŁONIEWSKA A., WARDZYŃSKA G., PAJOR E., KORSAK D., BORYŃ K., Transmission of specific groups of bacteria through water distribution system, Pol. J. Microbiol., 2007, 56 (2), 129.
  • [2] Regulation of the Minister of Health from December 7, 2017 on the quality of water intended for human consumption (in Polish), Dz. U. 2017, poz. 2294.
  • [3] HOLINGER E.P., ROSS K.A., ROBERTSON C.E., STEVENS M.J., HARRIS J.K., PACE N.R., Molecular analysis of point-of-use municipal drinking water microbiology, Water Res., 2014, 49, 225.
  • [4] NARCISO-DA-ROCHA C., VAZ-MOREIRA I., SVENSSON-STADLER L., MOORE E.R., MANAIA C.M., Diversity and antibiotic resistance of Acinetobacter spp. in water from the source to the tap, Appl. Microbiol. Biotechnol., 2013, 97 (1), 329.
  • [5] VAZ-MOREIRA I., EGAS C., NUNES O.C., MANAIA C.M., Bacterial diversity from the source to the tap. A comparative study based on 16S rRNA gene-DGGE and culture-dependent methods, FEMS Microbiol. Ecol., 2013, 83 (2), 361.
  • [6] ANGELETTI S., Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology, J. Microbiol. Methods, 2017, 138, 20.
  • [7] MARTINEZ J.L., The role of natural environments in the evolution of resistance traits in pathogenic bacteria, Proc. R. Soc. B, 2009, 276, 2521.
  • [8] KORZENIEWSKA E., KORZENIEWSKA A., HARNISZ M., Antibiotic resistant Escherichia coli in hospital and municipal sewage and their emission to the environment, Ecotoxicol. Environ. Saf., 2013, 91, 96.
  • [9] MELLMANN A., CLOUD J., MAIER T., KECKEVOET U., RAMMINGER I., IWEN P., DUNN J., HALL G., WILSON D., LASALA P., KOSTRZEWA M., HARMSEN D., Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria, J. Clin. Microbiol., 2008, 46 (6), 1946.
  • [10] BIZZINI A., JATON K., ROMO D., BILLE J., PRODHOM G., GREUB G., Matrix-assisted laser desorption ionizationtime of flight mass spectrometry as an alternative to 16s RRNA gene sequencing for identification of difficult-to-identify bacterial strains, J. Clin. Microbiol., 2011, 49 (2), 693.
  • [11] CHRIST A.P.G., RAMOS S.R., CAYÔ R., GALES A.C., HACHICH E.M., SATO M.I.Z., Characterization of Enterococcus species isolated from marine recreational waters by MALDI-TOF MS and Rapid ID API® 20 Strep system, Mar. Pollut. Bull., 2017, 118 (1, 2), 376.
  • [12] ŁEBKOWSKA M., The occurrence of antibiotic-resistant bacteria in water intended for human consumption, Ochr. Środ., 2009, 31 (2), 11 (in Polish).
  • [13] CORNO G., COCI M., GIARDINA M., PLECHUK S., CAMPANILE F., STEFANI S., Antibiotics promote aggregation within aquatic bacterial communities, Front. Microbiol., 2014, 5 (297), 1.
  • [14] VAZ-MOREIRA I., NUNES O.C., MANAIA C.M., Diversity and antibiotic resistance in Pseudomonas spp. from drinking water, Sci. Total Environ., 2012, 426, 366.
  • [15] BANERJEE M., SARKAR P.K., Antibiotic resistance and susceptibility to some food preservative measures of spoilage and pathogenic microorganisms from spices, Food Microbiol., 2004, 21, 335.
  • [16] ROY A., MOKTAN B., SARKAR P.K., Characteristics of Bacillus cereus isolates from legume-based Indian fermented foods, Food Control, 2007, 18, 1555.
  • [17] KUMARI S., SARKAR P.K., Prevalence and characterization of Bacillus cereus group from various marketed dairy products in India, Dairy Sci. Technol., 2014, 94, 483.
  • [18] FALCONE-DIAS M.F., VAZ-MOREIRA I., MANAIA C.M., Bottled mineral water as a potential source of antibiotic resistant bacteria, Water Res., 2012, 46, 3612.
  • [19] BZDIL1 J., HOLY O., CHMELAR D., Gram-positive aerobic and microaerophilic microorganisms isolated from pathological processes and lesions of horses, Vet. Med., 2017, 62 (1), 1.
  • [20] HLEBA L., PETROVÁ J., ČUBOŇ J., KAČÁNIOVÁ M., Antibiotic resistance of microbial contaminations isolated from husbandry animals and foodstuffs, Anim. Sci. Biotech., 2014, 47 (1), 104.
  • [21] AB RAHMAN N., CHOWDHURY A.J.K., ABIDIN Z.A.Z., Antibiotic resistant bacteria from sediment of coastal water of Pahang, Malaysia, J. Technol., 2015, 77 (24), 65.
  • [22] ANKOLEKAR C., RAHMATI T., LABBÉ R.G., Detection of toxigenic Bacillus cereus and Bacillus thuringiensis spores in U.S. rice, Int. J. Food Microbiol., 2009, 128, 460.
  • [23] CHAVES J.Q., PIRES E.S., VIVONI A.M., Genetic diversity, antimicrobial resistance and toxigenic profiles of Bacillus cereus isolated from food in Brazil over three decades, Int. J. Food Microbiol., 2011, 147 (1), 12.
  • [24] ZHANG C.C., HSU H.J., LI C.M., Brevundimonas vesicularis bacteremia resistant to trimethoprim-sulfamethoxazole and ceftazidime in a tertiary hospital in southern Taiwan, J. Microbiol. Immunol. Infect., 2012, 45 (6), 448.
  • [25] SHANG S.T., CHIU S.K., CHAN M.C., WANG N.C., YANG Y.S., LIN J.C., CHANG F.Y., Invasive Brevundimonas vesicularis bacteremia: two case reports and review of the literature, 2012, 45 (6), 468.
  • [26] PAPAEFSTATHIOU C., CHRISTOPOULOS C., ZOUMBERI M., DIAKAKIS A., GEORGALAS P., KOUPPARI G., Fatal community-acquired Brevundimonas vesicularis bacteremia in an elderly patient, Clin. Microbiol. Newsl., 2005, 27 (7), 57.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1283623-d771-4e04-b2af-cf7bbe4e81ad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.