Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Recently, ionic liquids have been studied intensively as potential flame retardants for polymers. Ionic liquids (ILs) are compounds completely composed of ions with melting point below 100°C. Given the set of tuneable properties, ILs are used in a wide range of applications, including organic synthesis, analysis, extraction and separation processes, high-temperature lubricants, heat-transfer fluids, and thermal energy storage. ILs have emerged as a new option for fire safety applications. The review presents recent developments in the use of ionic liquids (ILs) for designing polymer materials endowed with enhanced flame retardancy. The fire properties of polymers being reviewed are reactions to small flames (limiting oxygen index, vertical burning test) and cone calorimetry. The fire properties measured in the cone calorimeter are discussed, including heat release rate and smoke production. The possible flame retardance mechanisms of ionic liquids are discussed.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
135--148
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- Fire University, Warsaw, Poland
Bibliografia
- 1. Aghmih, K., Boukhriss, A., El Bouchti, M., Chaoui, M.A., Majid, S., Gmouh, S., (2022). Introduction of Ionic Liquids as Highly Efficient Plasticizers and Flame Retardants of Cellulose Triacetate Films. Journal of Polymers and the Environment, vol. 30, pp. 2905–2918. https://doi.org/10.1007/s10924-022-02407-3
- 2. Cao, Y., Mu, T., (2014). Comprehensive Investigation on the Thermal Stability of 66 Ionic Liquids by Thermogravimetric Analysis. Ind. Eng. Chem. Res., vol. 53, pp. 8651−8664. dx.doi.org/10.1021/ie5009597
- 3. Chen, X., Feng, X., Jiao, C., (2017). Combustion and thermal degradation properties of flameretardant TPU based on EMIMPF6. Journal of Thermal Analysis and Calorimetry, vol. 129, pp. 51–857. https:// DOI 10.1007/s10973-017-6189-4
- 4. Choi, S.Y., Rodríguez., Mirjafari, A., Gilpin, D.F., McGrath, S., Malcolm, K.R., Tunney, M.M., Rogers, R.D., McNally, T., (2011). Dual functional ionic liquids as plasticisers and antimicrobial agents for medical polymers. Green Chem., Vol. 13, pp. 1527–1535. https:// DOI: 10.1039/c1gc15132k
- 5. Dowbysz, A., Samsonowicz, M., Kukfisz, B., Koperniak, P., (2025). Recent Developments of Nano Flame Retardants for Unsaturated Polyester Resin. Materials, vol. 17, p. 852. https://doi.org/10.3390/ma17040852
- 6. Gao, M., Wang,T., Chen, X., Zhang, X., Yi, D., Qian, L., You, R., (2022a). Preparation of ionic liquid multifunctional graphene oxide and its effect on decrease fire hazards of flexible polyurethane foam. Journal of Thermal Analysis and Calorimetry, vol. 147, pp. 7289–7297. https://doi.org/10.1007/s10973-021-11049-x
- 7. Gao, M., Guo, G., Chai, Z., Yi, D., Qian, L., (2022b).The flame retardancy of ionic liquid functionalized graphene oxide in unsaturated polyester resins. Fire and Materials, Vol. 46, pp. 743–752. https://doi.org/10.1002/fam.3020
- 8. Ghandi, K., (2014). A Review of Ionic Liquids, Their Limits and Applications. Green and Sustainable Chemistry, vol. 24 , pp. 44–53. doi: 10.4236/gsc.2014.41008
- 9. Guo,Y., Chen, X., Cui, J., Guo. J., Zhang, H., Yang, B., (2021). Effect of ionic liquid octyltriphenylphosphonium-chelated orthoborates on flame retardance of epoxy. Polym Adv Technol., vol. 32, pp. 1579–1596. https://doi.org/10.1002/pat.5195
- 10. Guo, Y., Zhang, H., Cui, J., Guo, J., Yang, B., (2024). Ternary intumescent flame retardant composition containing ionic liquid towards efficiently flame-retardant polystyrene. Journal of Applied Polymer Science, vol. 141, e55270. https://doi.org/10.1002/app.55270
- 11. Jiang, HC., Lin, WC., Hua, M., Pan, XH., Shu, CM., Jiang, JC., (2019). Analysis of thermal stability and pyrolysis kinetic of dibutyl phosphate-based ionic liquid through thermogravimetry, gas chromatography/mass spectrometry, and Fourier transform infrared spectrometry. Journal of Thermal Analysis and Calorimetry, vol. 138, pp. 489-499. https://doi.org/10.1007/s10973-019-08229-1
- 12. Jiao, C., Wang, H., Chen, X., Tang, G. (2019a). Flame retardant and thermal degradation properties of flame retardant thermoplastic polyurethane based on HGM@[EOOEMIm][BF4]. Journal of Thermal Analysis and Calorimetry, vol. 135, pp. 3141–3152. https://doi.org/10.1007/s10973-018-7505-3.
- 13. Jiao, C., Jiang, H., Chen, X. (2019b). Properties of fire agent integrated with molecular sieve and tetrafluoroborate ionic liquid in thermoplastic polyurethane elastomer. Polym Adv Technol., vol. 30, pp. 2159–2167. https://doi.org/10.1002/pat.4622
- 14. Jiao, C., Zhang, Y., Li, S., Chen, X., (2021). Flame retardant effect of 1‑aminoethyl‑3‑methylimidazolium hexafluorophosphate in thermoplastic polyurethane elastomer. Journal of Thermal Analysis and Calorimetry, vol. 145, pp. 173–184. https://doi.org/10.1007/s10973-020-09671-2
- 15. Fraser, K.J., MacFarlane, D.R., (2009). Phosphonium-based ionic liquids: an overview. Aust J Chem vol. 62, pp. 309–21. http://dx.doi.org/10.1071/CH08558
- 16. Hernández Battez, A., Bartolomé. M., Blanco, D., Viesca, J.L., Fernández-González, A., González, R., (2016). Phosphonium cation-based ionic liquids as neat lubricants: Physicochemical and tribological performance. Tribology International, vol. 95, pp. 118–131. http://dx.doi.org/10.1016/j.triboint.2015.11.015
- 17. Khazalpour, S., Yarie, M., Kianpour, E., Amani, A., Asadabadi, S., Seyf, J.Y., Rezaeivala, M., Azizian, S., Zolfigol, M.A., (2020). Applications of phosphonium-based ionic liquids in chemical processes. J Iran Chem Soc, vol. 17, pp. 1775–1917. https://doi.org/10.1007/s13738-020-01901-6
- 18. Kosiński, S., Rykowska, I., Gonsior, M., Krzyżanowski, P., (2023). Ionic liquids as antistatic additives for polymer composites – A review. Polymer Testing 112, 107649. https://doi.org/10.1016/j.polymertesting.2022.107649
- 19. Lei, Z., Chen, B., Koo, Y.M., MacFarlane, D.R., (2017). Introduction: Ionic Liquids. Chem. Rev., vol. 117, pp. 6633–6635. https://doi.org/10.1021/acs.chemrev.7b00246
- 20. Li, C., Ma, C., Li, J., (2020). Highly efficient flame retardant poly(lactic acid) using imidazole phosphate poly(ionic liquid). Polym Adv Technol., vol. 31, pp. 1765–1775. DOI: 10.1002/pat.4903
- 21. Li, J., Wu, W., Duan, R., Bi, X., Meng, W., Xu, J., Qu, H., (2023). Boron-containing ionic liquid functionalized Mo-MOF/graphene oxide hybrid for improving fire safety and maintaining mechanical properties for epoxy resin. Applied Surface Science, vol. 611, pp. 155736. https://doi.org/10.1016/j.apsusc.2022.155736
- 22. Livi, S., Baudoux, J., Gérard, J.-F., Duchet-Rumeau, J., (2022). Ionic Liquids: A Versatile Platform for the Design of a Multifunctional Epoxy Networks 2.0 Generation. Progress in Polymer Science, vol. 132, pp. 101581. https://doi.org/10.1016/j.progpolymsci.2022.101581
- 23. Mathews, L.D., Capricho, J.C., Peerzada, M., Salim, N.V., Parameswaranpillai, J., Hameed, N., (2022). Recent progress and multifunctional applications of fire-retardant epoxy resins. Materials Today Communications, vol. 33, pp. 104702. https://doi.org/10.1016/j.mtcomm.2022.104702
- 24. Matuszek, K., Piper, S.L., Brzęczek-Szafran, A., Roy, B., Saher, S., Pringle, J.M., MacFarlane, D.R., (2024). Unexpected Energy Applications of Ionic Liquids. Adv. Mater., vol. 36, p. 2313023. DOI: 10.1002/adma.202313023
- 25. Minea, A.A., (2020). Overview of Ionic Liquids as Candidates for New Heat Transfer Fluids. International Journal of Thermophysics, vol. 41, 151. https://doi.org/10.1007/s10765-020-02727-3
- 26. Pan, K., Liu, H., Wang, Z., Ji, W., Wang, J., Huang, R., Wei, Z., Ye, D., Xu, C., Wang, H., (2023). Insights into Ionic Liquids for Flame Retardant: A Study Based on Bibliometric Mapping. Safety, vol. 9, 49. https://doi.org/10.3390/safety9030049
- 27. Rakowska, J., Węgrzyn, M., Rudnik, E., (2021). Impact of ionic liquids on absorption behaviour of natural fibers/biopolyethylene biocomposites. Sci. Rep., 11, 20483–20494. https://doi.org/10.1038/s41598-021-99956-9
- 28. Rogalsky, S., Fatyeyeva, K., Lyoshina, L., Tarasyuk, O., Bulko, O., Lobok, S., (2014). Antimicrobial Properties and Thermal Stability of Polycarbonate Modified with 1-Alkyl-3-methylimidazolium Tetrafluoroborate Ionic Liquids. J. APPL. POLYM. SCI., vol. 131, issue 7, p. 40050. DOI: 10.1002/APP.40050
- 29. Rudnik, E., Węgrzyn, M., Kukfisz, B., Kamocka-Bronisz, R., (2022). Influence of ionic liquids on mechanical and thermal properties of polyethylene from renewable resources. J. Therm. Anal. Calorim., vol. 147, pp. 1215–1224. https://doi.org/10.1007/s10973-020-10489-1
- 30. Sonnier, R., Dumazert, L., Livi, S., Nguyen, TKL, Duchet-Rumeau, J., Vahabi, H., Laheurte P., (2016). Flame retardancy of phosphorus-containing ionic liquid based epoxy networks. Polymer Degradation and Stability, vol. 134, pp. 186–193. http://dx.doi.org/10.1016/j.polymdegradstab.2016.10.009
- 31. Velencoso, M.M., Battig, A., Markwart, J.C., Schartel, B., Wurm, F.R., (2018). Molecular Firefighting – How Modern Phosphorus Chemistry Can Help Solve the Challenge of Flame Retardancy. Angewandte Chemie, vol. 57, pp. 10450–10467. https://doi.org/10.1002/anie.201711735
- 32. Węgrzyn, M., (2018). Kierunki rozwoju środków uniepalniających stosowanych w materiałach polimerowych. Zeszyty Naukowe SGSP, vol. 65, pp. 37–54.
- 33. Xu, YJ., Shi, XH., Lu, JH., Qi, M., Guo, DM., Chen L., Wang, YZ., (2020). Novel phosphorus-containing imidazolium as hardener for epoxy resin aiming at controllable latent curing behavior and flame retardancy. Composites Part B, vol. 184, pp. 107673. https://doi.org/10.1016/j.compositesb.2019.107673
- 34. Zaripov, I.I., Vikhareva, I.N. , Buylova, E.A., Berestova, T.V., Mazitova, A.K., (2022). Additives to reduce the flammability of polymers. Nanotechnologies in Construction, vol. 14 (2), pp. 156–161. https://doi.org/10.15828/2075-8545-2022-14-2-156-161
- 35. Zhang, Y., Liu, C., Wang, J., Ren, S., Song, Y., Quan, P., Fang, L., (2023). Ionic liquids in transdermal drug delivery system: Current applications and future perspectives. Chinese Chemical Letters, vol. 34, Issue 3, p. 107631. https://doi.org/10.1016/j.cclet.2022.06.054
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d040fb0c-cc51-4287-8d68-cd9f688d1d59
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.