PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessing the impact of climate change on discharge in the Horyn River basin by analyzing precipitation and temperature data

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is important to investigate the hydrological consequences of current climate change. Hydrological responses to climate warming and wetter conditions include changes in discharge (frequency, amplitude, and volume). This paper describes current climate change and its impact on hydrological flow within the Horyn River basin. Daily air temperature and precipitation data obtained from the 17 meteorological stations located in and nearby the Horyn River basin, in combination with hydrological data (such as daily water discharges obtained from 9 water gauges), were used for the analysis of climate variability and its hydrological consequences. Analyses of meteorological variables and water discharges are crucial for the assessment of long-term changes in the river regime. Thiessen polygons were used to determine the area of influence of assigned specific meteorological stations, which affect the river’s catchments within the Horyn River basin. As a result of the trend analysis, it was observed that discharge within the Horyn River basin decreased over time. These results were congruent with the trends of precipitation data and air temperature data of the stations determined by the Thiessen polygons and basin boundaries. To understand current changes in the daily flow in the basin, changes in air temperature and precipitation for the period 1991-2020 were compared with the period of the climatic norm (1961-1990). A similar analysis was done for daily water discharges. Increasing air temperature and decreasing precipitation in the current period led to a significant decrease in discharges in the Horyn River basin, especially during the spring flood period.
Twórcy
  • Ukrainian Hydrometeorological Institute, State Emergency Service of Ukraine, National Academy of Sciences of Ukraine
  • Ukrainian Hydrometeorological Institute, State Emergency Service of Ukraine, National Academy of Sciences of Ukraine
  • Ukrainian Hydrometeorological Institute, State Emergency Service of Ukraine, National Academy of Sciences of Ukraine
  • Ukrainian Hydrometeorological Institute, State Emergency Service of Ukraine, National Academy of Sciences of Ukraine
Bibliografia
  • Al-Munqedhi B.M., El-Sheikh M.A., Alfarhan A.H., Alkahtani A.M., Arif I.A., Rajagopal R., Alharth S.T., 2022, Climate change and hydrological regime in arid lands: Impacts of dams on the plant diversity, vegetation structure and soil in Saudi Arabia, Saudi Journal of Biological Sciences, 29 (5), 3194-3206, DOI: 10.1016/j.sjbs.2022.01.043.
  • Andréasson J., Bergström S., Carlsson B., Phil Graham L., Lindström G., 2004, Hydrological change - climate change: impact simulations for Sweden, AMBIO: A Journal of the Human Environment, 33 (4), 228-234, DOI: 10.1579/0044-7447-33.4.228.
  • Barnett T., Mаlone R., Pennell W., 2004, The effects of climate change on water resources in the west: introduction and overview, Climate Change, 62 (1-3), 1-11.
  • Boots B.N., 1980, Weighting Thiessen polygons, Economic Geography, 56 (3), 248-259, DOI: 10.2307/142716.
  • Boots B.N., 1986, Voronoi (Thiessen) Polygons, Geo Books, Norwich, UK, 51 pp.
  • Brassel K.E., Reif D., 1979, A procedure to generate Thiessen polygons, Geographical Analysis, 11 (3), 289-303, DOI: 10.1111/j.1538-4632.1979.tb00695.x.
  • Brunet M., Jones P., Sigro J., Saladie O., Aguilar E., Moberg A., Della-Marta P.M., Lister D., Walther A., Lopez D., 2007, Temporal and spatial temperature variability and change over Spain during 1850-2005, Journal of Geophysical. Research: Atmospheres, 112 (D12), DOI: 10.1029/2006JD008249.
  • Bultot F., Coppens A., Dupriez A., Gellens D., Meulenberghs F., 1988, Repercussions of a CO2 doubling on the water cycle and on the water balance. A case study for Belgium, Journal of Hydrology, 99 (3-4), 45-56, DOI: 10.1016/0022-1694(88)90057-1.
  • Chornomoretz Yu.О., Hrebin V.V., 2010, Intra yearly distribution of individual elements of the water balance of the Desna River Basin (within Ukraine and their long-term fluctuations), Hydrology, Hydrochemistry and Hydroecology, 18, 98-106, (in Ukrainian).
  • Confortola G., Soncini A., Bocchiola D., 2013, Climate change will affect hydrological regimes in the Alps. A case study in Italy, Journal of Alpine Research, 101-3, DOI: 10.4000/rga.2176.
  • Dahri Z.H., Ludwig F., Moors E., Ahmad S., Ahmad B., Ahmad S., Riaz M., Kabat P., 2021, Climate change and hydrological regime of the high-altitude Indus basin under extreme climate scenarios, Science of the Total Environment, 768, DOI: 10.1016/j.scitotenv.2020.144467.
  • Devkota L.P., Gyawali D.R., 2015, Impacts of climate change on hydrological regime and water resources management of the Koshi River Basin, Nepal, Journal of Hydrology: Regional Studies, 4, 502-515, DOI: 10.1016/j.ejrh.2015.06.023.
  • Diemann J., Eltahir E., 2005, Sensitivity of regional hydrology to climate changes, with application to the Illinois River basin, Water Resources Research, 41 (7), DOI: 10.1029/2004WR003893.
  • Fiering M., Rogers P., 1989, Climate change and water resources planning under uncertainty, U.S. Army Engineer Institute for Water Resources, Fort Belvoir, VA.
  • Grover S., Tayal S., Sharma R., Beldring S., 2022, Effect of changes in climate variables on hydrological regime of Chenab basin, western Himalaya, Journal of Water and Climate Change, 13 (1), 357-371, DOI: 10.2166/wcc.2021.003.
  • Hodgkins GA.., Dudley R.W., 2006, Changes in the timing of winter-spring stream flows in eastern North America, 1913-2002, Geophysical Research Letters, 33 (6), DOI 10.1029/2005GL025593.
  • Hopchenko E.D., Ovcharuk V.А., Shakirzanova J.R., 2010, The researches of the influence of modern climate changes on the characteristics of maximum spring flood runoff in the Prypiat River Basin, Hydrology, Hydrochemistry and Hydroecology, 3 (20), 50-59, (in Ukrainian).
  • Hrebin V.V., 2010, The modern water regime of rivers in Ukraine (landscape- hydrologic analysis), Кyiv: Nika-Centr, 316 pp., (in Ukrainian).
  • Hrebin V.V., Vasylenko E.V., 2012, The analysis of current changes of the spring flood forming factors on the rivers in the Prypiat river basin (within Ukraine), Physical Geography and Geomorphology, 2 (66), 161-167.
  • Islam M.S., Aramaki T., Hanaki K., 2005, Development and application of an integrated water balance model to study the sensitivity of the Tokyo metropolitan area water availability scenario to climatic changes, Water Resources Management, 19 (4), 423-445, DOI: 10.1007/s11269-005-3277-1.
  • Javelle P., Taha Ouarda B.M.J., Bobée B., 2002, Spring flood analysis using the flood-duration-frequency approach: application to the provinces of Quebec and Ontario, Canada, Hydrological Processes, 17 (18), 3717-3736, DOI: 10.1002/hyp.1349.
  • Kastendeuch P., 2007, Pressure gradient force, atmospheric circulation and climate in Western Europe (1899-2002), International Journal of Climatology, 27 (15), 2055-2067, DOI: 10.1002/joc.1504.
  • Khatri D., Pandey V.P., 2021, Climate Change Impact on the Hydrological Characteristics of Tamor River Basin in Nepal Based on CMIP6 Models, [in:] Proceedings of 10th IOE Graduate Conference, 10, 532-539.
  • Kohnová S., Rončák P., Hlavčová K., Szolgay J., Rutkowska A., 2019, Future impacts of land use and climate change on extreme runoff values in selected catchments of Slovakia, Meteorology, Hydrology and Water Management, 7 (1), 47-55, DOI: 10.26491/mhwm/97254.
  • Koshkina O.V., Gorbachova L.O., 2013, Hydro-genetic research method of the main factors of the spring flood in the Desna River Basin, [in:] 11th Annual International Conference of Young Scientists on Energy Issues, Cyseni, Kaunas, Lithuanian Energy Institute, IX618-IX631.
  • Krasovskaia I., Gottschalk L., 2002, River flow regimes in a changing climate, Hydrological Sciences Journal, 47 (4), 597-609, DOI: 10.1080/02626660209492962.
  • Kuchar L., Szalińska W., Iwański S., Jelonek L., 2014, A modeling framework to assess the impact of climate change on river runoff, Meteorology, Hydrology and Water Management, 2 (2), 49-63, DOI: 10.26491/mhwm/36671.
  • Liu L., Xu Z.X., 2017, Hydrological implications of climate change on river basin water cycle: case studies of the Yangtze River and Yellow River basins, China, Applied Ecology and Environmental Research, 15 (4), 683-704, DOI: 10.15666/aeer/1504_683704.
  • Loboda N.S., 2005, Calculations and generalization of the annual runoff characteristics of the rivers in Ukraine in the conditions of anthropogenic influence, Odessa: Ekologia, 208 pp., (in Russian).
  • Malinowski Ł., Skoczko I., 2018, Impacts of climate change on hydrological regime and water resources management of the Narew River in Poland, Journal of Ecological Engineering, 19 (4), 167-175, DOI: 10.12911/22998993/91672.
  • Melnyk S., Loboda N., 2020, Trends in monthly, seasonal, and annual fluctuations in flood peaks for the upper Dniester River, Meteorology, Hydrology and Water Management, 8 (2), 28-36, DOI: 10.26491/mhwm/126705.
  • Menzel L., Niehoff D., Bürger G., Bronstert A., 2002, Climate change impacts on river flooding: A modelling study of three meso-scale catchments, Climatic Change: Implications for the Hydrological Cycle and for Water Management, 10, 249-269, DOI: 10.1007/0-306-47983-4_14.
  • Middelkoop H., Daamen K., Gellens D., Grabs W., Kwadijk J.C.J., Lang H., Parmet B.W.A.H., Schädler B., Schulla J., Wilke K., 2001, Impact of climate change on hydrological regimes and water resources management in the Rhine basin, Climatic Change, 49, 105-128, DOI: 10.1023/A:1010784727448.
  • Nazari P., Kardavany H., Farajirad P., Abdolreza A., 2016, Assessment of runoff changes under climate change scenarios in the dam basin of Ekbatan, Hamedan Iran, Journal of Climatology and Weather Forecasting, 4, DOI: 10.4172/2332- 2594.1000172.
  • Nemec I., Schaake I., 1982, Sensitivity of water resources systems to climate variation, Hydrological Sciences Journal., 27 (3), 46-52, DOI: 10.1080/02626668209491113.
  • Nováky B., Bálint G., 2013, Shifts and modification of the hydrological regime under climate change in Hungary, [in:] Climate Change, B.R. Singh (ed)., IntechOpen, DOI: 10.5772/54768.
  • Peterson D., Keller A., 1990, Irrigation, [in:] Climate Change and US Water Resources, John Wiley, New York, 269-306.
  • Phil Graham L., Hagemann S., Jaun S., Beniston M., 2007, On interpreting hydrological change from regional climate models, Climate Change, 81, 97-122, DOI: 10.1007/s10584-006-9217-0.
  • Planton S., Terray L., 2007, Detection et attribution á l’ėchelle regionale: Le cas la France, La Météorologie, 58, 25-29, DOI: 10.4267/2042/18205.
  • Pripyat Basin Water Management Authority, 2022, Water Resources, available online at https://buvrzt.gov.ua/vodni_resyrsy.html (data access 18.04.2023).
  • Řenzničkova L., Brázdil R., Tolasz R., 2007, Meteorological singularities in the Czech Republic in the period 1961-2002, Theoretical and Applied Climatology, 88 (3-4), 179-192, DOI: 10.1007/s00704-006-0253-5.
  • Rodhe A., 1981, Spring flood: meltwater or groundwater? Nordic Hydrology, 12, 21-30.
  • Schindler D., 2001, The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium, Canadian Journal of Fisheries and Aquatic Sciences, 58 (1), 18-29, DOI: 10.1007/978-1-4615-1493-0_11.
  • Schnorbus M., Werner A., Bennett K., 2022, Impacts of climate change in three hydrologic regimes in British Columbia, Canada, Hydrological Processes, 28 (3), 1170-1189. DOI: 10.1002/hyp.9661.
  • Strutynska V.M., 2008, Dynamics of the ice regime characteristics in rivers of the Dnipro River Basin on the background of modern climate changes, Hydrology, Hydrochemistry and Hydroecology, 14, 116-122, (in Ukrainian).
  • Thiessen A.H., 1911, Precipitation averages for large areas, Monthly Weather Review, 39 (7), 1082-1084, DOI: 10.1175/1520- 0493(1911)392.0.CO;2.
  • Voronoi G., 1908, Nouvelles applications des parametres continus a la theorie des formes quadratiques, deuxieme memoire, recherches sur les parallelloedres primitifs, Journal fur die Reine and Angewandte Mathematik, 134, 198-287, DOI: 10.1515/crll.1908.134.198.
  • Whitfield P., 2001, Linked hydrologie and climate wariations in British Columbia and Yokon, Environmental Monitoring and Assessment, 67 (1-2), 217-238, DOI: 10.1023/A:1006438723879.
  • WMO, 2017, Guidelines on the Calculation of Climate Normals, WMO-No. 1203, World Meteorological Organization, Geneva, Switzerland.
  • Xiang Y., Wang Y., Chen Y., Zhang Q., 2022, Impact of climate change on the hydrological regime of the Yarkant River Basin, China: An assessment using three SSP scenarios of CMIP6 GCMs, Remote Sensing, 14 (115), DOI: 10.3390/rs14010115.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cfe228ee-9fc5-4f67-964a-23c201d2e076
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.