PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Molecular dynamics study of the fracture of single layer buckled silicon monosulfide and germanium selenide

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Molecular dynamics simulations were conducted with the Stillinger–Weber potential at room temperature to study the mechanical properties and find the mode-I critical stress intensity factor of buckled two-dimensional (2D) hexagonal silicon mono-sulfide (SiS) and germanium selenide (GeSe) sheets. Uniaxial tensile tests were simulated for pristine and pre-cracked sheets. 2D Young’s modulus of SiS and GeSe are estimated at 38.3 and 26.0 N/m, respectively. Their 2D fracture strength is about 3.1–3.5 N/m. By using the initial crack length with the corresponding fracture stress, their mode-I critical stress intensity factor is estimated in the range from 0.19 through 0.22 MPapm. These values differ within 5% from those obtained by the surface energy and are very small compared to the reported fracture toughness of single-crystalline monolayer graphene.
Rocznik
Strony
3--12
Opis fizyczny
Bibliogr. 19 poz., rys., wykr.
Twórcy
autor
  • Division of Mechanics of Materials and Structures, School of Mechanical Engineering, Hanoi University of Science and Technology, No. 1, Dai Co Viet Road, Hanoi, Viet Nam
Bibliografia
  • 1. Z. Zhu, J. Guan, D. Liu, D. Tománek, Designing isoelectronic counterparts to layered group V semiconductors, ACS Nano, 9, 8, 8284–8290, 2015.
  • 2. C. Kamal, A. Chakrabarti, M. Ezawa, Direct band gaps in group IV-VI monolayer materials: binary counterparts of phosphorene, Physical Review B, 93, 12, 125428, 2016.
  • 3. H. Arkın E. Aktürk, Investigation of adatom adsorption on single layer buckled germanium selenide, Applied Surface Science, 390, 185–189, 2016.
  • 4. H.L. Kagdada, P.K. Jha, P. Spiewak, K.J. Kurzydłowski, Understanding the behavior of electronic and phonon transports in germanium based two dimensional chalcogenides, Journal of Applied Physics, 124, 23, 235701, 2018.
  • 5. J.-W. Jiang, Y.-P. Zhou, Handbook of Stillinger-Weber Potential Parameters for Two-Dimensional Atomic Crystals, INtechOpen, 2017.
  • 6. M.-Q. Le, H.-T. Nguyen, T.-L. Bui, Fracture of 28 buckled two-dimensional hexagonal sheets, Mechanics of Advanced Materials and Structures, 1–13, 2021.
  • 7. F.H. Stillinger T.A. Weber, Computer simulation of local order in condensed phases of silicon, Physical Review B, 31, 8, 5262, 1985.
  • 8. S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, Journal of Computational Physics, 117, 1, 1–19, 1995.
  • 9. M.-Q. Le, Fracture of monolayer germanene: a molecular dynamics study, International Journal of Modern Physics B, 32, 22, 1850241, 2018.
  • 10. M.-Q. Le, Reactive molecular dynamics simulations of the mechanical properties of various phosphorene allotropes, Nanotechnology, 29, 19, 195701, 2018.
  • 11. G. Clavier, N. Desbiens, E. Bourasseau, V. Lachet, N. Brusselle-Dupend, B. Rousseau, Computation of elastic constants of solids using molecular simulation: comparison of constant volume and constant pressure ensemble methods, Molecular Simulation, 43, 17, 1413–1422, 2017.
  • 12. W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics, Journal of Molecular Graphics, 14, 1, 33–38, 1996.
  • 13. T. Alonso-Lanza, A. Ayuela, F. Aguilera-Granja, An array of layers in silicon sulfides: Chainlike and monolayer, Physical Review B, 94, 24, 245441, 2016.
  • 14. M.H. Rahman, E.H. Chowdhury, D.A. Redwan, S. Hong, Computational characterization of thermal and mechanical properties of single and bilayer germanene nanoribbon, Computational Materials Science, 190, 110272, 2021.
  • 15. B. Mortazavi, O. Rahaman, M. Makaremi, A. Dianat, G. Cuniberti, T. Rabczuk, First-principles investigation of mechanical properties of silicene, germanene and stanene, Physica E: Low-dimensional Systems and Nanostructures, 87, 228–232, 2017.
  • 16. T.L. Anderson, Fracture Mechanics – Fundamentals and Applications, 4th ed., CRC Press, USA, 2017.
  • 17. P. Hess, Thickness of elemental and binary single atomic monolayers, Nanoscale Horizons, 5, 3, 385–399, 2020.
  • 18. M. Mantina, A.C. Chamberlin, R. Valero, C.J. Cramer, D.G. Truhlar, Consistent van der Waals radii for the whole main group, The Journal of Physical Chemistry A, 113, 19, 5806–5812, 2009.
  • 19. B. Zhang, L. Mei, H. Xiao, Nanofracture in graphene under complex mechanical stresses, Applied Physics Letters, 101, 12, 121915, 2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cca2fa8e-6012-472b-ba8c-b313261bd871
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.