PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mimetite precipitation on Pb-clinoptilolite: an effective approach for arsenate removal from water

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This short communication proposes a novel approach to arsenate remediation using in situ precipitation of mimetite [Pb₅(AsO₄)₃Cl], a sparingly soluble mineral phase with an apatite structure. The Pb²⁺ source was provided by a lead-modified zeolite (clinoptilolite) loaded with approximately 70 g Pb/kg. It was reacted with arsenate (50 mg As/L) and chloride (20 mg Cl/L) at initial pH values of 2 and 7. Mimetite crystallized on and in the vicinity of zeolite due to the reaction of Pb(II) desorbed from zeolite with arsenate and chloride ions present in aqueous solution: 5Pb2+ desorbed from zeolite +3AsO3-(4) contamination +Cl-supplied extra =Pb5(As)4)3Cl precipitated. Mimetite formed rapidly resulting in efficient arsenate sequestration. At pH 7, arsenate removal reached 99.88% after 24 hr, with minimal lead release (<0.02 mg/L). These results demonstrate that lead-modified clinoptilolite is a promising material for a coupled sorption–precipitation mechanism which provides an effective strategy for arsenic immobilization in contaminated aqueous systems.
Słowa kluczowe
Czasopismo
Rocznik
Strony
44--51
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, al. Mickiewicza 30, 30-059 Kraków, Poland
  • Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • Abdul, K. S. M., Jayasinghe, S. S., Chandana, E. P., Jayasumana, C., & De Silva, P. M. C. (2015). Arsenic and human health effects: A review. Environmental Toxicology and Pharmacology, 40(3), 828–846. https://doi. org/10.1016/j.etap.2015.09.016
  • Bajda, T. (2010). Solubility of mimetite Pb5 (AsO4) 3Cl at 5–55 C. Environmental Chemistry, 7(3), 268–278. https:// doi.org/10.1071/EN10021
  • Bajda, T., Franus, W., Manecki, A., Manecki, M., Mozgawa, W., & Sikora, M. (2004). Sorption of heavy metals on natural zeolite and smectite-zeolite shale from the Polish Flysch Carpathians. Polish Journal of Environmental Studies, 13(Suppl III), 7–10. https:// www.academia.edu/download/39747994/Sorption_ of_heavy_metals_on_natural_zeol20151106-2731- 1iqtzv0.pdf
  • Banning, A. (2021). Geogenic arsenic and uranium in Germany: Large-scale distribution control in sediments and groundwater. Journal of Hazardous Materials, 405, 124186. https://doi.org/10.1016/j. jhazmat.2020.124186
  • Bektaş, N., & Kara, S. (2004). Removal of lead from aqueous solutions by natural clinoptilolite: Equilibrium and kinetic studies. Separation and Purification Technology, 39(3), 189–200. https://doi.org/10.1016/j. seppur.2003.12.001
  • Cama, J., Ayora, C., Querol, X., & Ganor, J. (2005). Dissolution kinetics of synthetic zeolite NaP1 and its implication to zeolite treatment of contaminated waters. Environmental Science & Technology, 39(13), 4871–4877. https://doi.org/10.1021/es0500512
  • Deliyanni, E. A., Bakoyannakis, D. N., Zouboulis, A. I., & Matis, K. A. (2003). Sorption of As (V) ions by akaganeite-type nanocrystals. Chemosphere, 50(1), 155–163. https:// doi.org/10.1016/S0045-6535(02)00351-X
  • Günay, A., Arslankaya, E., & Tosun, İ. (2007). Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics. Journal of Hazardous Materials, 146(1–2), 362–371. https://doi.org/10.1016/j.jhazmat.2006.12.034
  • Inglezakis, V. J., Stylianou, M. A., Gkantzou, D., & Loizidou, M. D. (2007). Removal of Pb (II) from aqueous solutions by using clinoptilolite and bentonite as adsorbents. Desalination, 210(1–3), 248–256. https://doi.org/ 10.1016/j.desal.2006.05.049
  • Kleszczewska-Zębala, A., Manecki, M., Bajda, T., Rakovan, J., & Borkiewicz, O. J. (2016). Mimetite formation from goethite-adsorbed ions. Microscopy and Microanalysis, 22(3), 698–705. https://doi.org/10.1017/S143192761 6000829
  • Lenoble, V., Deluchat, V., Serpaud, B., & Bollinger, J. C. (2003). Arsenite oxidation and arsenate determination by the molybdenum blue method. Talanta, 61(3), 267–276. https://doi.org/10.1016/S0039-9140(03)00274-1
  • Magalhães, M. C. F. (2002). Arsenic. An environmental problem limited by solubility. Pure and Applied Chemistry, 74(10), 1843–1850. https://doi.org/10.1351/pac200 274101843
  • Magalhães, M. C. F., & Silva, M. C. M. (2003). Stability of lead (II) arsenates. Monatshefte fuer Chemie/Chemical Monthly, 134(5), 735–743. https://doi.org/10.1007/ s00706-002-0581-9
  • Manecki, M., Bogucka, A., Bajda, T., & Borkiewicz, O. (2006). Decrease of Pb bioavailability in soils by addition of phosphate ions. Environmental Chemistry Letters, 3, 178–181. https://doi.org/10.1007/s10311-005- 0030-1
  • Marciniak, H., Diduszko, R., & Kozak, M. (2006). XRAYAN Program do Rentgenowskiej Analizy Fazowej, Wersja 4.0.1. KOMA. Mozgawa, W., & Bajda, T. (2005). Spectroscopic study of heavy metals sorption on clinoptilolite. Physics and Chemistry of Minerals, 31(10), 706–713. https://doi. org/10.1007/s00269-004-0433-8
  • Mozgawa, W., Król, M., & Bajda, T. (2009). Application of IR spectra in the studies of heavy metal cations immobilization on natural sorbents. Journal of Molecular Structure, 924, 427–433. https://doi.org/10.1016/j. molstruc.2008.12.028
  • Murcott, S. (2012). Arsenic contamination in the world. IWA Publishing. Oter, O., & Akcay, H. (2007). Use of natural clinoptilolite to improve water quality: Sorption and selectivity studies of lead (II), copper (II), zinc (II), and nickel (II). Water Environment Research, 79(3), 329–335. https://doi. org/10.2175/106143006X111880
  • Payne, K. B., & Abdel-Fattah, T. M. (2004). Adsorption of divalent lead ions by zeolites and activated carbon: Effects of pH, temperature, and ionic strength. Journal of Environmental Science and Health, Part A, 39(9), 2275–2291. https://doi.org/10.1081/ESE200026265
  • Payne, K. B., & Abdel-Fattah, T. M. (2005). Adsorption of arsenate and arsenite by iron-treated activated carbon and zeolites: Effects of pH, temperature, and ionic strength. Journal of Environmental Science and Health, Part A, 40(4), 723–749. https://doi.org/10.1081/ESE200048254
  • Ravenscroft, P., Brammer, H., & Richards, K. (2011). Arsenic pollution: A global synthesis. John Wiley & Sons. Sharma, V. K., & Sohn, M. (2009). Aquatic arsenic: Toxicity, speciation, transformations, and remediation. Environment International, 35(4), 743–759. https:// doi.org/10.1016/j.envint.2009.01.005
  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natura waters. Applied Geochemistry, 17(5), 517–568. https:// doi.org/10.1016/S0883-2927(02)00018-5
  • Solińska, A., & Bajda, T. (2022). Modified zeolite as a sorbent for removal of contaminants from wet flue gas desulphurization wastewater. Chemosphere, 286, 131772. https://doi.org/10.1016/j.chemosphere.2021. 131772
  • Wilkin, R. T., & Barnes, H. L. (1998). Solubility and stability of zeolites in aqueous solution; I, Analcime, Na-, and K-clinoptilolite. American Mineralogist, 83(7–8), 746– 761. https://doi.org/10.2138/am-1998-7-807
  • Wołowiec, M., Muir, B., Zięba, K., Bajda, T., Kowalik, M., & Franus, W. (2017). Experimental study on the removal of VOCs and PAHs by zeolites and surfactant-modified zeolites. Energy & Fuels, 31(8), 8803–8812. https:// doi.org/10.1021/acs.energyfuels.7b01124
  • World Health Organization. (2018, February 15). Arsenic. https://www.who.int/news-room/fact-sheets/detail/ arsenic
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-cafcff96-43c6-4742-b220-3c6aeee07877
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.