PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Application of ‎virtual reality for remote ship inspections and surveys – a systematic review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of virtual reality for the establishment of compliance is a potential game-changer in enabling real-time remote inspections/ surveys of vessels. When provided with high-speed internet access, robots or remote-controlled inspection vehicles such as drones, crawlers, unmanned aerial vehicles (UAVs), and so on, may be equipped with remote inspection technologies (RITs), and smart optical cameras and sensor suites in conjunction with wearable technologies, and smart/ mobile devices, to carry out an aerial and underwater virtual assessment of the coating condition of the steel structural members of the vessel while transmitting the data in real-time or near real-time, via collaborative software. To ease the travel restrictions and border closures prompted by the Coronavirus (COVID-19), these novel technologies have been introduced by some flag states and classification as alternatives to traditional in-person statutory inspections/ class surveys. This study aims to employ a systematic literature review (SLR) approach to (1) classify the profiles of existing publications related to remote inspections/ surveys, (2) highlight the key thematic areas being discussed within the domain of remote inspections/ surveys and identify tasks and processes that may require virtual reality application. To the best of our knowledge, the findings have revealed that there is no existing SLR paper related to the application of remote inspection techniques in ship inspections/ surveys. However, the review retrieved 28 primary studies from the following databases: Scopus, Web of Science, Science Direct, and Google Scholar. Based on the results, various studies have proposed multifarious solutions to overcoming the existing technical and regulatory barriers to the mass deployment of these cutting-edge technologies.
Twórcy
autor
  • University of Tasmania, Launceston, Australia
  • University of Tasmania, Launceston, Australia
autor
  • University of Tasmania, Launceston, Australia
autor
  • University of Tasmania, Launceston, Australia
Bibliografia
  • [1] IACS. ʺIACS Publishes Unified Requirement on Remote Classification Surveys.ʺ IACS. https://iacs.org.uk/media/7738/iacs‐remote‐surveysinformation‐ paper.pdf.
  • [2] L. Carballo Piñeiro, M. Q. Mejia Jr, and F. Ballini,ʺBeyond COVID‐19: the future of maritime transport,ʺ WMU Journal of Maritime Affairs, vol. 20, no. 2, pp. 127‐ 133, 2021.
  • [3] A. Oyenuga, ʺPerspectives on the impact of the COVID‐19 pandemic on the global and African maritime transport sectors, and the potential implications for Africa’s maritime governance,ʺ WMU Journal of Maritime Affairs, vol. 20, no. 2, pp. 215‐245, 2021.
  • [4] UNCTAD, ʺReview of Maritime Transport ʺ United Nations Commission on Trade and Development, 31/January 2020 2019. Accessed: 09/02/2023. [Online]. Available: https://unctad.org/system/files/officialdocument/rmt2019_en.pdf.
  • [5] UNCTAD, ʺReview of Maritime Transport,ʺ United Nations Conference on Trade and Development, 125,126,127,128,133,142, 18/11/2021 2021. Accessed: 31/01/2023. [Online]. Available:https://unctad.org/webflyer/review‐maritime‐transport‐ 2021.
  • [6] UNCTAD, ʺReview of Maritime Transport ʺ in ʺNavigating Stormy Waters,ʺ United Nations Conference on Trade and Development, 11/2022 2022. Accessed: 12/28/2022. [Online]. Available:https://unctad.org/system/files/officialdocument/rmt2022_en.pdf.
  • [7] L. Poggi, C. M. Rizzo, T. Gaggero, M. Gaiotti, E. Ravina, and Ieee, ʺAssessment of ship robotic inspections,ʺ in 25th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Vienna, AUSTRIA, Sep 08‐11 2020, in IEEE International Conference on Emerging Technologies and Factory Automation‐ETFA, 2020, pp. 1491‐1498. [Online]. Available: ://WOS:000627406500241. [Online]. Available: ://WOS:000627406500241.
  • [8] DNV. ʺPosidonia 2016: DNV GL performs first drone production survey.ʺ https://www.dnv.com/services/drone‐surveys‐the‐saferand‐smarter‐way‐103018 (accessed 05/02/2023, 2023).
  • [9] Seadrone. ʺClass Societies and Remote InspectionTechniques.ʺ Seadrone.https://seadronepro.com/blog/class‐societies‐steadymarch‐to‐remote‐inspection‐technologies‐andtechniques (accessed 13/01/2023, 2023).
  • [10] J. Albiez et al., ʺRepeated close‐distance visual inspections with an AUV,ʺ in MTS/IEEE Oceans Conference, Monterey, CA, Sep 19‐23 2016, 2016, doi: 10.1109/oceans.2016.7761099. [Online]. Available: ://WOS:000399929000105.
  • [11] F. M. Shah, T. Gaggero, M. Gaiotti, and C. M. Rizzo, ʺCondition assessment of ship structure using robot assisted 3D‐reconstruction,ʺ Ship Technology Research,vol. 68, no. 3, pp. 129‐146, Sep 2021, doi:10.1080/09377255.2021.1872219.
  • [12] F. Bonnin‐Pascual and A. Ortiz, ʺOn the use of robots and vision technologies for the inspection of vessels: A survey on recent advances,ʺ Ocean Engineering, vol. 190,p. 106420, 2019/10/15/ 2019, doi:https://doi.org/10.1016/j.oceaneng.2019.106420.
  • [13] S. Keele, ʺGuidelines for performing systematic literature reviews in software engineering,ʺ ed:Technical report, ver. 2.3 ebse technical report. ebse, 2007.
  • [14] IACS, ʺAnnual Review 2021,ʺ International Association of Classification Societies, 11/2022 2021. Accessed: 12/28/2022. [Online]. Available:https://iacs.org.uk/about/iacs‐annualreview/#:~:text=2021%20Annual%20Review%20includes%20a,Remote%20Survey%20and%20Cyber%20Resilience.
  • [15] A. Pastra, N. Schauffel, T. Ellwart, and T. Johansson,ʺBuilding a trust ecosystem for remote inspection technologies in ship hull inspections,ʺ Law, Innovation and Technology, vol. 14, no. 2, pp. 474‐497, 2022.
  • [16] S. Hong, D. Chung, J. Kim, and Ieee, ʺDevelopment of a Hover‐Capable AUV System for Automated Visual Ship‐Hull Inspection and Mapping,ʺ in Conference on OCEANS, Anchorage, AK, Sep 18‐21 2017, in Oceans‐Ieee, 2017. [Online]. Available: ://WOS:000455012000247. [Online]. Available: ://WOS:000455012000247.
  • [17] J. Pray and K. McSweeney, ʺIntegration of wearable technology for inspection tasks,ʺ in Offshore Technology Conference, 2018: OnePetro.
  • [18] T. M. Johansson, D. Dalaklis, and A. Pastra, ʺMaritime robotics and autonomous systems operations: Exploring pathways for overcoming international technoregulatory data barriers,ʺ Journal of Marine Science and Engineering, vol. 9, no. 6, p. 594, 2021.
  • [19] L. Poggi, T. Gaggero, M. Gaiotti, E. Ravina, and C. M. Rizzo, ʺRecent developments in remote inspections of ship structures,ʺ International Journal of Naval Architecture and Ocean Engineering, vol. 12, pp. 881‐ 891, 2020.
  • [20] L. Poggi, T. Gaggero, M. Gaiotti, E. Ravina, and C. M. Rizzo, ʺRobotic inspection of ships: inherent challenges and assessment of their effectiveness,ʺ Ships and Offshore Structures, vol. 17, no. 4, pp. 742‐756, 2022.
  • [21] ITF, ʺBeyond the Limit: How Covid‐19 corner‐cutting places too much risk in the international shipping system,ʺ in ʺBeyond the Limit of remote Inspections ʺ International Transport Workers’ Federation Maritime Safety Committee, United Kingdom, 09/2020 2020, vol. 8. Accessed: 12/29/2022. [Online]. Available: https://www.itfglobal.org/sites/default/files/node/news/files/ITF%20MSC%20Report%20September%202020_Beyond_the_limit_v8.pdf.
  • [22] F. Bonnin‐Pascual and A. Ortiz, ʺA Flying Tool for Sensing Vessel Structure Defects Using Image Contrast‐Based Saliency,ʺ Ieee Sensors Journal, vol. 16, no. 15, pp. 6114‐6121, Aug 2016, doi: 10.1109/jsen.2016.2578360.
  • [23] F. Bonnin‐Pascual, A. Ortiz, E. Garcia‐Fidalgo, and J. P.Company‐Corcoles, ʺA reconfigurable framework to turn a MAV into an effective tool for vessel inspection,ʺ Robotics and Computer‐Integrated Manufacturing, vol. 56, pp. 191‐211, Apr 2019, doi: 10.1016/j.rcim.2018.09.009.
  • [24] R. Y. Brogaard, M. Zajaczkowski, L. Kovac, O. Ravn, and E. Boukas, ʺTowards UAV‐Based Absolute Hierarchical Localization in Confined Spaces,ʺ in IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Khalifa Univ, ELECTR NETWORK, Nov 04‐06 2020, in IEEE International Symposium on Safety Security and Rescue Robotics, 2020, pp. 182‐188. [Online]. Available: ://WOS:000651056800033. [Online]. Available: ://WOS:000651056800033.
  • [25] F. Wen, J. Pray, K. McSweeney, and H. Gu, ʺEmerging inspection technologies–enabling remote surveys/inspections,ʺ in Offshore Technology Conference, 2019: One Petro.
  • [26] S. Hong, D. Chung, J. Kim, Y. Kim, A. Kim, and H. K. Yoon, ʺIn‐water visual ship hull inspection using a hover‐capable underwater vehicle with stereo vision,ʺ Journal of Field Robotics, vol. 36, no. 3, pp. 531‐546, 2019.
  • [27] M. Kalimuthu, R. Parween, Z. S. Saldi, P. Veerajagadheswar, and M. R. Elara, ʺDesign and development of a 3D printed hydroblasting robot,ʺ Materials Today: Proceedings, vol. 70, pp. 470‐476, 2022.
  • [28] Z. Fang et al., ʺRobust autonomous flight in constrained and visually degraded shipboard environments,ʺ Journal of Field Robotics, vol. 34, no. 1, pp. 25‐52, 2017.
  • [29] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman, ʺSystematic literature reviews in software engineering–a systematic literature review,ʺinformation and software technology, vol. 51, no. 1, pp. 7‐15, 2009.
  • [30] A. Ahmad et al., ʺA systematic literature review on using machine learning algorithms for software requirements identification on stack overflow,ʺ Security and Communication Networks, vol. 2020, pp. 1‐19, 2020.
  • [31] L. M. Kmet, L. S. Cook, and R. C. Lee, ʺStandard quality assessment criteria for evaluating primary research papers from a variety of fields,ʺ 2004.
  • [32] N. Sánchez‐Gómez, J. Torres‐Valderrama, J. A. García‐García, J. J. Gutiérrez, and M. Escalona, ʺModel‐based software design and testing in blockchain smart contracts: A systematic literature review,ʺ IEEE Access, vol. 8, pp. 164556‐164569, 2020.
  • [33] M. Jez et al., ʺA Shared Immersive Virtual Environment for Improving Ship Design Review,ʺ in 19th International Conference on Ships and Maritime Research (NAV), Trieste, ITALY, Jun 20‐22 2018, 2018,pp. 770‐777, doi: 10.3233/978‐1‐61499‐870‐9‐770. [Online]. Available: ://WOS:000567876300090.
  • [34] C. T. Li et al., ʺREAL‐TIME SIMULATION OF HULL STRUCTURE USING FINITE ELEMENT IN VIRTUAL REALITY APPLICATIONS,ʺ in 40th ASME International Conference on Ocean, Offshore and Arctic Engineering (OMAE), Electr Network, Jun 21‐30 2021, 2021. [Online]. Available: ://WOS:000881651500038. [Online]. Available: ://WOS:000881651500038.
  • [35] M. OʹByrne, B. Ghosh, F. Schoefs, and V. Pakrashi, ʺApplications of Virtual Data in Subsea Inspections,ʺ Journal of Marine Science and Engineering, vol. 8, no. 5, May 2020, Art no. 328, doi: 10.3390/jmse8050328.
  • [36] F. Bonnin‐Pascual, E. Garcia‐Fidalgo, J. P. Company‐Corcoles, and A. Ortiz, ʺMUSSOL: A Micro‐Uas to Survey Ship Cargo hOLds,ʺ Remote Sensing, vol. 13, no. 17, Sep 2021, Art no. 3419, doi: 10.3390/rs13173419.
  • [37] M. Walter, F. Hover, and J. Leonard, ʺSLAM for ship hull inspection using exactly sparse extended information filters,ʺ 2008. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2‐s2.0‐51649115879&doi=10.1109%2fROBOT.2008.4543408&par tnerID=40&md5=3a473a91d02cb42240a333a6c4c8415a.[Online]. Available: https://www.scopus.com/inward/record.uri?eid=2‐s2.0‐51649115879&doi=10.1109%2fROBOT.2008.4543408&partnerID=40&md5=3a473a91d02cb42240a333a6c4c8415a.
  • [38] V. Alexandropoulou, T. Johansson, K. Kontaxaki, A. Pastra, and D. Dalaklis, ʺMaritime remote inspection technology in hull survey & inspection: A synopsis of liability issues from a European Union context,ʺ Journal of International Maritime Safety, Environmental Affairs, and Shipping, vol. 5, no. 4, pp. 184‐195, 2021.
  • [39] F. Bonnin‐Pascual, E. Garcia‐Fidalgo, J. P. Company‐Corcoles, and A. Ortiz, ʺMUSSOL: A Micro‐Uas to Survey Ship Cargo hOLds,ʺ Remote Sensing, vol. 13, no.17, Sep 2021, Art no. 3419, doi: 10.3390/rs13173419.
  • [40] F. Bonnin‐Pascual and A. Ortiz, ʺA novel approach for defect detection on vessel structures using saliencyrelated features,ʺ Ocean Engineering, vol. 149, pp. 397‐ 408, 2018.
  • [41] W. J. Chan, P. Y. Wu, A. B. Azam, and Y. Cai, ʺWhen VR meets Underwater Robots: Creating an Underwater Hull Cleaning Simulator,ʺ 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2‐s2.85146048802&doi=10.1109%2fISMARAdjunct57072.2022.00082partnerID=40&md5=4736aa8f 72601bbee9bc525e1f7c3f9c.
  • [42] Y.‐S. Han, J. Lee, J. Lee, W. Lee, and K. Lee, ʺ3D CAD data extraction and conversion for application of augmented/virtual reality to the construction of ships and offshore structures,ʺ International Journal of Computer Integrated Manufacturing, vol. 32, no. 7, pp.658‐668, 2019.
  • [43] S. Hong, D. Chung, J. Kim, Y. Kim, A. Kim, and H. K Yoon, ʺIn‐water visual ship hull inspection using a hover‐capable underwater vehicle with stereo vision,ʺ Journal of Field Robotics, vol. 36, no. 3, pp. 531‐546, 2019.
  • [44] M. Kalimuthu, R. Parween, Z. S. Saldi, P. Veerajagadheswar, and M. R. Elara, ʺDesign and development of a 3D printed hydroblasting robot,ʺ Materials Today: Proceedings, vol. 70, pp. 470‐476, 2022.
  • [45] C. T. Li et al., ʺREAL‐TIME SIMULATION OF HULLSTRUCTURE USING FINITE ELEMENT IN VIRTUALREALITY APPLICATIONS,ʺ in 40th ASME International Conference on Ocean, Offshore and Arctic Engineering (OMAE), Electr Network, Jun 21‐30 2021, 2021. [Online]. Available: ://WOS:000881651500038. [Online]. Available: ://WOS:000881651500038.
  • [46] S. Reed, J. Wood, J. Vazquez, P.‐Y. Mignotte, and B.Privat, ʺA smart ROV solution for ship hull and harbor inspection,ʺ in Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense IX, 2010,vol. 7666: SPIE, pp. 535‐546.
  • [47] E. Stensrud, A. Torstensen, D.‐B. Lillestøl, and K.Klausen, ʺTowards Remote Inspections of FPSOʹs Using Drones Instrumented with Computer Vision and Hyperspectral Imaging,ʺ in Offshore Technology Conference, 2021: One Petro.
  • [48] Y. Wu, X. Ta, R. Xiao, Y. Wei, D. An, and D. Li, ʺSurvey of underwater robot positioning navigation,ʺ Applied Ocean Research, vol. 90, p. 101845, 2019/09/01/ 2019, doi:https://doi.org/10.1016/j.apor.2019.06.002.
  • [49] Q. Zhang, J. Zhang, A. Chemori, and X. Xiang, ʺVirtual submerged floating operational system for robotic manipulation,ʺ Complexity, vol. 2018, pp. 1‐18, 2018.
  • [50] J. Zhou, W. Li, H. Fang, Y. Zhang, and F. Pan, ʺThe Hull Structure and Defect Detection Based on Improved YOLOv5 for Mobile Platform,ʺ in Chinese Control Conference, CCC, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2851404 53115&doi=10.23919%2fCCC55666.2022.9902288&partnerID=40&md5=1b4d12a4930df4eecc1c4ad72067697c.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c77d44df-10cc-41db-99db-5693dc5afc16
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.