PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of High-Temperature Annealing on the Cross-Tension Property of Resistance Spot Welded Medium-Mn Steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As one of the most promising 3rd generation advanced high strength steels (AHSS), medium Mn steels attract much attention because of their exceptional mechanical property and reasonable cost. However, their application in the modern automotive industry is limited by poor weldability. In this study, 7Mn steel was welded by resistance spot welding (RSW), which was followed by high-temperature annealing to increase the cross-tension property. With this effort, enhanced cross-tension strength (CTS) with a partial interfacial fracture (PIF) mode was realized. During the annealing after RSW that produced martensite, austenitization was realized and then evolved into martensite by the following air cooling. This process produced structure homogeneity across the joint. With respect to the RSW joint, martensite remained the dominant structure after annealing while the diffusion of C and Mn solutes was triggered. With the increase of annealing temperature, the diffusion was enhanced, and the grain boundary embrittlement was reduced, leading to higher CTS.
Twórcy
autor
  • Shanghai University, State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy, 200444, P.R. China
  • Shanghai University, School of Materials Science and Engineering, Center for Advanced Solidification Technology (CAST), Shanghai, 200444, P.R.China
  • Shanghai University, State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy, 200444, P.R. China
  • Shanghai University, School of Materials Science and Engineering, Center for Advanced Solidification Technology (CAST), Shanghai, 200444, P.R.China
autor
  • Shanghai University, State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy, 200444, P.R. China
  • Shanghai University, School of Materials Science and Engineering, Center for Advanced Solidification Technology (CAST), Shanghai, 200444, P.R.China
autor
  • Shanghai University, State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy, 200444, P.R. China
  • Shanghai University, School of Materials Science and Engineering, Center for Advanced Solidification Technology (CAST), Shanghai, 200444, P.R.China
autor
  • Shanghai University, State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy, 200444, P.R. China
  • Shanghai University, School of Materials Science and Engineering, Center for Advanced Solidification Technology (CAST), Shanghai, 200444, P.R.China
autor
  • Shanghai University, State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy, 200444, P.R. China
  • Shanghai University, School of Materials Science and Engineering, Center for Advanced Solidification Technology (CAST), Shanghai, 200444, P.R.China
autor
  • State Key Laboratory of Development and Application Technology of Automotive Steels, Shanghai 201900, P.R. China
  • Automobile Steel Research Institute, R&D Center, Baoshan Iron & Steel Co., Ltd . Shanghai 201900, P.R. China
autor
  • Shanghai University, State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy, 200444, P.R. China
  • Shanghai University, School of Materials Science and Engineering, Center for Advanced Solidification Technology (CAST), Shanghai, 200444, P.R.China
Bibliografia
  • [1] H. Eisazadeh, M. Hamedi, A. Halvaee, Mater. Des. 31, 149 (2010).
  • [2] Y. Gao, B. Zhao, J.J. Vlassak, C. Schick, Prog. Mater. Sci. 104, 53 (2019).
  • [3] C. Lesch, N. Kwiaton, F.B. Klose, Steel Res. Int. 88, 1700210 (2017).
  • [4] R. Kuziak, R. Kawalla, S. Waengler, Arch. Civ. Mech. Eng. 8, 103 (2008).
  • [5] H. Aydin, E. Essadiqi, I.-H. Jung, S. Yue, Mater. Sci. Eng. A 564, 501 (2013).
  • [6] V. Shterner, A. Molotnikov, I. Timokhina, Y. Estrin, H. Beladi, Mater. Sci. Eng. A 613, 224 (2014).
  • [7] S. Chen, R. Rana, A. Haldar, R.K. Ray, Prog. Mater. Sci. 89, 345 (2017).
  • [8] D.Q. Zou, S.H. Li, J. He, B. Gu, Y.F. Li, Mater. Sci. Eng. A 715, 243 (2018).
  • [9] Y.K. Lee J. Han, Mater. Sci. Technol. 31, 843 (2015).
  • [10] Y. Chang, C.Y. Wang, K.M. Zhao, H. Dong, J.W. Yan, Mater. Des. 94, 424 (2016).
  • [11] Y. Li, W. Li, W. Liu, X. Wang, X. Hua, H. Liu, X. Jin, Acta Mater. 146, 126 (2018).
  • [12] M. Kuzmina, D. Ponge, D. Raabe, Acta Mater. 86, 182 (2015).
  • [13] Y.J. Chao, J. Eng. Mater. Technol. 125, 125 (2003).
  • [14] G. Park, K. Kim, S. Uhm, C. Lee, Mater. Sci. Eng. A 752, 206 (2019).
  • [15] D.C. Saha, Y. Cho, Y.-D. Park, Sci. Technol. Weld. Joining 18, 711 (2013).
  • [16] Y. Wang, K. Ding, B. Zhao, Y. Zhang, G. Wu, T. Wei, H. Pan, Y. Gao, Highly Enhanced Cross Tensile Strength of the Resistance Spot Welded Medium Manganese Steel by Optimized Post-Heating Pulse, TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings, 2020, pp. 1871-1880.
  • [17] S. Li, S. Yang, Q. Lu, H. Luo, W. Tao, Metall. And Mater. Trans. B 50, 1 (2019).
  • [18] D.C. Saha, S. Han, K.G. Chin, I. Choi, Y.D. Park, Steel Res. Int. 83, 352 (2012).
  • [19] D. Shirmohammadi, M. Movahedi, M. Pouranvari, Mater. Sci. Eng. A 703, 154 (2017).
  • [20] L. Cheng, A. Böttger, Th.H. de Keijser, E. J. Mittemeijer, Scr. Metall. Mater. 24, 509 (1990).
  • [21] H. Xiao, S. Zheng, Y. Xin, J. Xu, K. Han, H. Li, Q. Zhai, Metals 10, 8 (2020).
  • [22] S. Kajiwara, S. Uehara, Y. Nakamura, Philos. Mag. Lett. 60, 147 (1989).
  • [23] M. Stadler, M. Gruber, R. Schnitzer, C. Hofer, Weld. World 64, 335 (2020).
  • [24] Y. Wang, K. Ding, B. Zhao, Y. Zhang, G. Wu, T. Wei, H. Pan, Y. Gao, Effect of the Cooling Time on the Cross Tensile Strength of the Resistance Spot Welded Medium Manganese Steel, TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings, Pp. 515-523, 2020.
  • [25] R. Trivedi, S. Liu, P. Mazumder, E. Simsek, Sci. Technol. Adv. Mater. 2, 309 (2001).
  • [26] W. Du, C. Song, F. Zhang, M. Jiang, Q. Zhai, K. Han, Metall. Mater. Trans. B 46, 2423 (2015).
  • [27] V.P. Kujanpää, S.A. David, ICALEO 1986, 63 (1986).
  • [28] N. Nakada, K. Mizutani, T. Tsuchiyama, S. Takaki, Acta Mater. 65, 251 (2014).
  • [29] B. Zhao, Y. Wang, K. Ding, G. Wu, T. Wei, H. Pan, Y. Gao, J. Mater. Eng. Perform, 30, 1259 (2021).
  • [30] P.S. Wei, T.H. Wu, Int. J. Heat Mass Transfer 79, 408 (2014).
Uwagi
1. This work was supported by the National Natural Science Foundation of China (Grant no. U1760102), Independent Research Project of State Key Laboratory of Advanced Special Steel and Shanghai Key Laboratory of Advanced Ferrometallurgy (Shanghai University, Grant no. 19DZ2270200), the State Key Laboratory of Development and Application Technology of Automotive Steels (Baosteel Group, Grant no. Y17ECEQ05Y).
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c7583c54-bf0e-4e9f-9889-0b1d838ca39c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.