PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental research of the material filtration characteristics with nanofibers addition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nanofiber properties and the possibilities of their application in industry, including car air intake filtration materials production for vehicle engines are discussed. The attention is paid to the standard filtration materials low efficiency in the range of dust grains below 5 μm. Filtration materials properties with nanofibers addition are presented. Filter paper test conditions and methodology at the station with particle counter were developed. Filtration efficiency characteristics, and accuracy studies as well as filtration materials pressure drop differing in structure were made: standard paper, and materials with nanofibers addition. These are commonly used filter materials for car air intake systems production. Filtration materials with nanofibers addition test results show significantly higher efficiency values, and efficiency for dust grains below 5 μm in comparison with standard filter paper. It was found that there are 16 μm dust grains in the airflow behind the cellulose insert, which may be the reason for the accelerated wear of the engine’s “piston-cylinder” association. Lower dust mass loading km values of filtration materials with nanofibers addition in relation to standard filter papers were observed.
Twórcy
autor
  • Military University of Technology, Faculty of Mechanical Engineering Institute of Motor Vehicles and Transportation Gen. Witolda Urbanowicza Street 2, 00-908 Warsaw, Poland tel.: +48 261 837121, fax: +48 261837370
autor
  • Military University of Technology, Faculty of Mechanical Engineering Institute of Motor Vehicles and Transportation Gen. Witolda Urbanowicza Street 2, 00-908 Warsaw, Poland tel.: +48 261 837121, fax: +48 261837370
Bibliografia
  • [1] Barris, M. A., Total FiltrationTM: The influence of filter selection on engine wear, emissions, and performance, SAE 952557, 1995.
  • [2] Diesel Engine Air Filtration, Materiały informacyjne firmy PALL Corporation, USA, 2004.
  • [3] Bugli, N., Automotive engine air cleaners – performance trends, SAE Technical Paper 2001-01-1356.
  • [4] Durst, M., Klein, G. Moser, N., Filtration in Fahrzeugen, Mann+Hummel GMBH, Ludwigsburg, Germany 2005.
  • [5] Dziubak, T., Problems of dust removal from multi-cyclones of engine air cleaners in crosscountry motor vehicles, The Archives of Automotive Engineering, Vol. 76, No. 2, pp. 37-62, 2017.
  • [6] Dziubak, T., Szwedkowicz, S., Operating properties of non-woven fabric panel filters for internal combustion engine inlet air in single and two-stage filtration systems, Eksploatacja i Niezawodność – Maintenance and Reliability, Vol. 17, No. 4, pp. 519-527, 2015.
  • [7] Erdmannsdörfer, H., Lesttingmoglichkeiten von Papierfiltern zur Reinigung der Ansaugluft von Diselmotoren, MTZ, 32, pp. 123-131, 1971.
  • [8] Fitch, J., Clean oil reduces engine fuel consumption, Practicing Oil Analysis, 11-12, 2002.
  • [9] George, J., Forna, R., Cravero, T., Air filtration with fine polymeric fibres, 16-th Annual Technical Conference and Exposition 2003, Technical Sessions Papers, Reno-Nevada, June 17-20, 2003.
  • [10] Grafe, T., Gogins, M., Barris, M., Schaefer, J., Canepa, R., Nanofibers in filtration applications in transportation, Filtration 2001 International Conference and Exposition, Chicago, Illinois, December 3-5, 2001.
  • [11] Graham, K., et al., Polymeric nanofibers in air filtration applications, 5th Annual Technical Conference & Expo of the American Filtration & Separations Society, Galveston, Texas, April 9-12, 2002.
  • [12] Heikkilä, P., Sipilä, A., Peltola, M., Harlin, A., Electrospun PA-66 coating on textile surfaces, Institute of Fibre Materials Science, Tampere University of Technology, pp. 864-870, Tampere, Finland, 2007.
  • [13] Jaroszczyk, T., Petrik, S., Donahue, K., Recent development in heavy duty engine air filtration and the role of nanofiber filter media, Journal of KONES Powertrain and Transport, Vol. 16, No. 4, pp. 207-216, 2009.
  • [14] Jaroszczyk, T., Fallon, S. L., Schwartz, S. W., Development of high dust capacity, high efficiency engine air filter with nanofibers, Journal of KONES Powertrain and Transport, Vol. 15, No. 3, pp. 215-224, 2008.
  • [15] Khajavi, R., Abbasipour, M., Bahador, A., Electrospun biodegradable nanofibers scaffolds for bone tissue engineering, Journal Appl. Polym. Sci, Vol. 133 (3), pp. 42883, 2016.
  • [16] Li, D., Xia, Y., Electrospinning of nanofibers: reinventing the wheel?, Adv. Mater., Vol. 16 (14), pp. 1150-1170, 2004.
  • [17] Lo, L.-M., Chen, D.-R., Pui, D. Y. H., Experimental study of pleated fabric cartridges in a pulse-jet cleaned dust collector, Powder Technology, Vol. 197, pp. 141-149, 2010.
  • [18] PN-ISO 5011, Filtry powietrza do silników spalinowych i sprężarek, PKNM, 1994.
  • [19] Taufkirch, G., Mayr, G., Papierluftfilter für Motoren in Nutzfahrzeugen, MTZ, 45, No. 3, pp. 95-105, 1984.
  • [20] http://www.cottonbangladesh.com/January2009/ElectroSpinning.htm, access 14. 12. 2017.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c695e2d1-4678-4ea8-9f74-d53b1317eca3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.