Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Fatigue is one of the main failure modes in marine structures, and it is caused by the strong cyclic characteristics of the loads they support. This failure mode is amplified in areas of high stress concentration, such as at the intersection of primary and secondary elements. In this paper, a two-phase study is proposed that compares numerical and experimental results using a digital image correlation technique. The described procedure establishes selection, design, and scantling criteria and provides recommendations for the design of the transverse structure using specimens with different geometries. These geometries correspond to different designs for the transverse primary structure that use a longitudinal secondary stiffener with variable thickness and longitudinal spacing to transverse in a dynamic and quasi-static regime. The stress state for this regime is calculated based on the biaxiality indication concept, which uses the fatigue phenomenon (safety factor and sensitivity curves) and fracture mechanics (parameters of the Paris crack propagation law, correlation value, and law of variation of the stress intensity factor).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
116--127
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
- Universidad Politécnica de Madrid Avenida de la Memoria 28040 Madrid Spain
- Universidad Politécnica de Madrid Avenida de la Memoria 28040 Madrid Spain
- Universidad Politécnica de Madrid Avenida de la Memoria 28040 Madrid Spain
Bibliografia
- 1. W. Fricke, A. Von Lileienfeld-Toal, and H. Paetzoldt, “Fatigue strength investigations of welded details of stiffened plate structures in steel ships,” International Journal of Fatigue, vol. 34(1), pp. 17–26, 2012. doi: 10.1016/j.ijfatigue.2011.01.021.
- 2. J. Kuniala, “Fatigue Analysis of 3-Dimensional Ship Structural Detail,” Aalto University School of Engineering. Thesis for the degree of Master of Science in Technology, 2016.
- 3. W. Fricke, “Fatigue analysis of welded joints: state of development,” Marine Structures, vol. 16(3), pp. 185–200, 2003. doi: 10.1016/S0951-8339(02)00075-8.
- 4. W. Fricke, O. Doerk, and C. Weissenbord, “Comparison of different calculation methods for structural stresses at welded joints,” International Journal of Fatigue, vol. 25(5), pp. 359–369, 2003. doi: 10.1016/S0142-1123(02)00167-6.
- 5. W. Fricke and H. Paetzold, “Full-scale fatigue tests of ship structures to validate the S-N approaches for fatigue strength assessment,” Marine Structures, vol. 23(1), pp. 115–130, 2010. doi: 10.1016/j.marstruc.2010.01.004.
- 6. I. Lotsberg, “Fatigue design of plated structures using finite element analysis,” Ships and Offshore Structures, vol. 1(1), pp. 45–54, 2006. doi: 10.1533/saos.2005.0006.
- 7. W. Fricke, “Recent developments and future challenges in fatigue strength assessment of welded joints,” Proc Inst Mech Eng C J Mech Eng Sci., vol. 229(7), pp. 1224–1239, 2014. doi: 10.1177/0954406214550015.
- 8. K. Tran Nguyen, Y. Garbatov, and C. Guedes Soares, “Fatigue damage assessment of corroded oil tanker details based on global and local stress approaches,” International Journal of Fatigue, vol. 43, pp. 197–206, 2012. doi: 10.1016/j. ijfatigue.2012.04.004.
- 9. M. Aygül, “Fatigue Analysis of Welded Structures Using the Finite Element Method,” Thesis for the Degree of Licenciate of Engineering. Chalmers University of Technology, 2012.
- 10. I. Poutiainen, P. Tanskanen, and G. Marquis, “Finite element methods for structural hot spot stress determination - a comparison of procedures,” International Journal of Fatigue, vol. 26(11), pp. 1147–1157, 2004. doi: 10.1016/j. ijfatigue.2004.04.003.
- 11. Z. Wang, “Fatigue Behavior and Failure Assessment of Plate Connections in Ship Shaped Structures,” PhD thesis. National University of Singapore, 2008.
- 12. H. M. Westergaard, “Bearing Pressures and Cracks,” Journal of Applied mechanics, vol. 6, pp. A49–53, 1939.
- 13. G. R. Irwin, “Analysis of stresses and strains near the end of a crack traversing a plate,” Journal of Applied mechanics, vol. 24, pp. 361–364, 1957.
- 14. M. L. Williams, “On the Stress Distribution at the Base of a Stationary Crack,” Journal of Applied mechanics, vol. 24(1), pp. 109–114, 1956.
- 15. F. Erdogan and G. C. Sih, “On the crack extension in plates under plane loading and transverse shear,” Journal of basic Engineering, vol. 85(4), pp. 519–527, 1963. doi: 10.1115/1.3656897.
- 16. M. Hussain, S. Pu, and J. Underwood, “Strain energy release rate for a crack under combined mode I and mode II,” Proceedings of the 1973 National Symposium on Fracture Mechanics, Part II (ASTM International), pp. 2–28, 1974. doi: 10.1520/STP33130S.
- 17. M. Chafi and A. Boulenouar, “A Numerical Modelling of Mixed Mode Crack Initiation and Growth in Functionally Graded Materials,” Materials Research, vol. 22(3), pp. e20180701, 2019. doi : 10.1590/1980-5373-mr-2018-0701
- 18. A. Carpinteri, “Stress-singularity and generalized fracture toughness at the vertex of re-entrant corners,” Engineering Fracture Mechanics, vol. 26(1), pp. 143–155, 1987. doi: 10.1016/0013-7944(87)90086-5.
- 19. M. Strandberg, “Fracture at V-notches with contained plasticity,” Engineering Fracture Mechanics, vol. 69(3), pp. 403–415, 2002. doi: 10.1016/S0013-7944(01)00079-0.
- 20. J. D. Carroll, W. Abuzaid, J. Lambros, and H. Sehitoglu, “ High resolution digital image correlation measurements of strain accumulation in fatigue crack growth,” International Journal of Fatigue, vol. 57, pp. 140–150, 2013. https://doi. org/10.1016/j.ijfatigue.2012.06.010.
- 21. J. Blaber, B. Adair, and A. Antoniou, “NCorr: Open-Source 2D Digital Image Correlation Matlab Software,” Experimental Mechanics, vol. 55, pp. 1105–1122, 2015. doi: 10.1007/ s11340-015-0009-1.
- 22. R. Branco, F. V. Antunes, J. A. Martins Ferreira, and J. M. Silva, “Determination of Paris law constants with a reverse engineering technique,” Engineering Failure Analysis, vol. 16, pp. 631–638, 2009. doi: 10.1016/j.engfailanal.2008.02.004.
- 23. I. Galic, I. Cular, V. Kresimir, and Z. Tonkovic, “Comparison of SIF solutions obtained by XFEM and conventional FEM or cracks in complex geometries like valve body,” Procedia Structural Integrity, vol. 13, pp. 2109–2113, 2018. doi: 10.1016/j.prostr.2018.12.200.
- 24. N. Möes, J. Dolbow, and T. Belytschko, “A finite element method for crack growth without remeshing,” International Journal for Numerical Methods in Engineering, vol. 46, pp. 131–150, 1999. doi:10.1002/(sici)1097-0207(19990910)46:1%3c131::aidnme726%3e3.0.co;2-j.
- 25. F. Zhou, J. Molinari, and Y. Li, “Three-dimensional numerical simulations of dynamic fracture in silicon carbide reinforced aluminium,” Engineering Fracture Mechanics, vol. 71, pp. 1357–1378, 2004. doi: https://doi.org/10.1016/ S0013-7944(03)00168-1.
- 26. A. O. Ayhan, “Three-dimensional fracture analysis using tetrahedral enriched elements and fully unstructured mesh,” International Journal of Solids and Structures, vol. 48, pp. 492–505, 2011. doi: https://doi.org/10.1016/j. ijsolstr.2010.10.012.
- 27. W. Huang, Y. Garbatov, and C. Guedes Soares, “Fatigue reliability assessment of a complex welded structure subjected to multiple cracks,” Engineering Structures, vol. 56, pp. 868–879, 2013. doi: https://doi.org/10.1016/j. engstruct.2013.06.011
- 28. T. Ulleland and M. Svensson, “Stress Concentration Factors in Side Shells Longitudinals Connected to Transverse Webframes,” Proceedings of the Eleventh International Offshore and Polar Engineering Conference, 2001.
- 29. M. S. Vidhya and K. V. M. Christina, “Fatigue Life, Fatigue Damage, Fatigue Factor of Safety, Fatigue Sensitivity, Biaxiality Indication and Equivalent Stress of a Radial Connecting Rod,” International Research Journal of Engineering and Technology, vol. 7(9), pp. 1499–1502, 2020.
- 30. H. R. Wasmi, M. Q. Abdullah, and O. A. Jassim, “Testing and Estimation Fatigue Life of a Flange Connection used in Power Plant by ANSYS,” International Journal of Current Engineering and Technology, vol. 6(4), pp. 1302–1306, 2006.
- 31. A. Bhanage and K. Padmanabhan, “Design for fatigue and simulation of glass fibre/epoxy composite automobile leaf spring,” ARPN Journal of Engineering and Applied Sciences, vol. 9(3), pp. 196, 2014.
- 32. P. C. Paris and F. Erdogan, “A critical analysis of crack propagation laws,” Journal of Basic Engineering, vol. 85 (4), pp. 528–534, 1963. doi: 10.1115/1.3656900.
- 33. N. Perez, Fracture Mechanics. Springer US, 2004.
- 34. M. Mlikota, S. Staib, S. Schmauder, and Z. Bozic, “Numerical determination of Paris law constants for carbon steel using a two-scale model,” Journal of Physics: Conference Series, vol. 843, pp. 012042, 2017. doi: 10.1088/1742-6596/843/1/012042.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c24ce207-cc85-423e-86c6-0dfe693dfdf3