Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Antyoksydanty w biodegradowalnych materiałach polimerowych do pakowania żywności – przegląd literatury
Języki publikacji
Abstrakty
This review summarizes the recent advances in the incorporation of antioxidants into biodegradable polymer-based food packaging materials. Natural antioxidants such as polyphenols, carotenoids, and vitamins, as well as selected synthetic compounds, are discussed in the context of their origin, mechanism of action, and application methods including blending, encapsulation, and surface coating. The review also compares antioxidant efficiency across various biopolymer matrices including PLA, chitosan, PHA, PBAT, PVA, TPS, and PBS. Special attention is given to the functional performance, regulatory considerations, and future prospects of active packaging systems aimed at prolonging food shelf life and enhancing sustainability.
Podsumowano aktualny stan wiedzy na temat stosowania przeciwutleniaczy w biodegradowalnych materiałach opakowaniowych do żywności. Omówiono naturalne przeciwutleniacze, takie jak polifenole, karotenoidy i witaminy, a także wybrane związki syntetyczne, uwzględniając ich pochodzenie, mechanizm działania i metody integracji (mieszanie, enkapsulacja, powlekanie). Przeanalizowano efektywność dodatków w różnych osnowach polimerowych, m.in. PLA, chitozanie, PBAT, TPS, PBS i PHA. Szczególną uwagę poświęcono właściwościom funkcjonalnym, aspektom regulacyjnym oraz przyszłości aktywnych opakowań wspierających trwałość i zrównoważony rozwój.
Czasopismo
Rocznik
Tom
Strony
431--448
Opis fizyczny
Bibliogr. 189 poz., rys., tab.
Twórcy
autor
- Łukasiewicz Research Network – Industrial Chemistry Institute, ul. Rydygiera 8, 01-793 Warszawa, Poland
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, ul. Postepu 36A, 05-552, Jastrzebiec, Magdalenka, Poland
Bibliografia
- [1] Rhein S., Schmid M.: Resources, Conservation and Recycling 2020, 162, 105063. https://doi.org/10.1016/j.resconrec.2020.105063
- [2] Chamas A., Moon H., Zheng J. et al.: ACS Sustainable Chemistry and Engineering 2020, 8, 3494. https://doi.org/10.1021/acssuschemeng.9b06635
- [3] Ncube L.K., Ude A.U., Ogunmuyiwa E.N. et al.: Recycling 2021, 6(1), 12. https://doi.org/10.3390/recycling6010012
- [4] Pan D., Su F., Liu C. et al.: Advanced Composites and Hybrid Materials 2020, 3, 443. https://doi.org/10.1007/s42114-020-00190-0
- [5] Jiang Y., Yang F., Ul Hassan Kazmi S.S. et al.: Chemosphere 2022, 286(1), 131677. https://doi.org/10.1016/j.chemosphere.2021.131677
- [6] Pan Z., Liu Q., Sun X. et al.: Godwana Research 2022, 108, 31. https://doi.org/10.1016/j.gr.2021.10.024
- [7] Wainkwa Chia R., Lee J.Y., Kim H. et al.: Environmental Chemistry Letters 2021, 19, 4211. https://doi.org/10.1007/s10311-021-01297-6
- [8] Kumari A., Rajput V.D., Mandzhieva S.S et al.: Plants 2022, 11(3), 340. https://doi.org/10.3390/plants11030340
- [9] Zolotova N, Kostreva A., Dzhalilova D. et al.: PeerJ 2022, 10, e13503. https://doi.org/10.7717/peerj.13503
- [10] Tayal P., Mandal S., Pandey P. et al.: Environmental Science Archives 2023, 2(2), 195. https://doi.org/10.5281/zenodo.8311591
- [11] https://nrf.com/research/meet-2020-consumers-driving-change (access date 10.10.2024)
- [12] https://www.accenture.com/content/dam/accenture/final/a-com-migration/r3-3/pdf/pdf-169/accen¬ture-winning-with-circular-economy.pdf (access date 10.10.2024)
- [13] https://www.mckinsey.com/capabilities/sustainability/our-insights/how-much-will-consumers-pay-to-go-green (access date 10.10.2024)
- [14] https://www.pwc.com/gx/en/news-room/press-releases/2024/pwc-2024-voice-of-consumer-survey. html (access date 10.10.2024)
- [15] https://www.nestle.com/sustainability/waste-reduction/packaging-strategy ( access d ate 10.10.2024)
- [16] https://www.coca-colacompany.com/sustainability/ packaging-sustainability (access date 10.10.2024)
- [17] https://www.europarl.europa.eu/news/en/press-room/20240419IPR20589/new-eu-rules-to-reduce-reuse-and-recycle-packaging (access d ate 10.10.2024)
- [18] Gupta V., Biswas D., Roy S.: Materials 2022, 15(17), 5899. https://doi.org/10.3390/ma15175899
- [19] Shaikh S., Yaqoob M., Aggarwal P.: Current Research in Food Science 2021, 4, 503. https://doi.org/10.1016/j.crfs.2021.07.005
- [20] Omerović N., Djisalov M., Živojević K. et al.: Comprehensive Reviews in Food Science and Food Safety 2021, 20(3), 2428. https://doi.org/10.1111/1541-4337.12727
- [21] Bojanowska A., Sulimierska A.: Sustainability 2023, 15(18), 13980. https://doi.org/10.3390/su151813980
- [22] Duarte P., Silva S.C., Roza A.S. et al.: Sustainable Futures 2024, 7, 100193. https://doi.org/10.1016/j.sftr.2024.100193
- [23] Branca G., Resciniti R., Babin B.J.: Italian Journal of Marketing 2024, 2024, 77. https://doi.org/10.1007/s43039-023-00084-1
- [24] https://sustainablepackaging.org/wp-content/uploads/2022/01/Ensuring-the-Success-of- Compostable-Packaging.pdf (access date 10.10.2024)
- [25] Marsh K., Bugusu B.: Journal of Food Science 2007, 72(3), R39. https://doi.org/10.1111/j.1750-3841.2007.00301.x
- [26] https://www.yoonpak.com/importance-of-food-packaging-guide/ (access date 10.10.2024)
- [27] https://www.alertpackaging.com/the-role-of-food-packaging/ (access date 10.10.2024)
- [28] Kołakowska A., Bartosz G: “Oxidation of Food Components: An Introduction” in “Food Oxidants and Antioxidants. Chemical, Biological and Functional Properties” (editor Bartosz G.), CRC Press, Boca Raton 2014, p. 1.
- [29] Estévez M., Li Z., Soladoye O.P. et al.: Advances in Food and Nutrition Research 2017, 82, 45. https://doi.org/10.1016/bs.afnr.2016.12.005
- [30] Shahidi F., Hossain A.: Molecules 2022, 27(15), 5014. https://doi.org/10.3390/molecules27155014
- [31] Tao. L.: Advances in Food Technology and Nutritional Sciences 2015, 1(6), 135. https://doi.org/10.17140/AFTNSOJ-1-123
- [32] Hellwig M.: Angewandte Chemie International Edition 2019, 58(47), 16742. https://doi.org/10.1002/anie.201814144
- [33] Hellwig M.: Journal of Agricultural and Food Chemistry 2020, 68(46), 12870. https://doi.org/10.1021/acs.jafc.0c00711
- [34] Wąsowicz E., Gramza A, Hęś M. et al.: Polish Journal of Food and Nutrition Sciences 2004, 54, 87.
- [35] Stešková A., Morochovičová M., Lešková E.: Journal of Food and Nutrition Research 2006, 45, 55.
- [36] Herbig A.L., Renard C.M.G.C.: Food Chemistry 2017, 220, 444. https://doi.org/10.1016/j.foodchem.2016.10.012
- [37] Pignitter M., Grosshagauer S., Somoza V.: “Stability of Vitamin E in Foods” in “Vitamin E in Human Heath” (editors Weber P., Birringer M., Blumberg J.B., Eggersdorfer M., Frank J.), Humana
- [38] Halliwell B., Gutteridge J.M.C: Free Radical Biology and Medicine 1995, 18(1), 125. https://doi.org/10.1016/0891-5849(95)91457-3
- [39] Halliwell B.: Biochemical Society Transactions 2007, 35(5), 1147. https://doi.org/10.1042/BST0351147
- [40] Aminzare M., Hashemi M., Ansirian E. et al.: Advances in Animal and Veterinary Sciences 2019, 7(5), 417. http://doi.org/10.17582/journal.aavs/2019/7.5.417.426
- [41] Wypych G.: “Encyclopedia of Polymer and Rubber Additives”, ChemTech Publishing, Toronto 2024.
- [42] Li G., Zhao M., Xu F. et al.: Molecules 2022, 25(21), 5023. https://doi.org/10.3390/molecules25215023
- [43] Yankov D.: Frontiers in Chemistry 2022, 10, 823005. https://doi.org/10.3389/fchem.2022.823005
- [44] Pat. USA. 2 668 162 (1954).
- [45] de Albuquerque T.L., Marques Júnior J.E., de Queiroz L.P. et al.: International Journal of Biological Macromolecules 2021, 186, 933. https://doi.org/10.1016/j.ijbiomac.2021.07.074
- [46] Montané X., Montornes J.M., Nogalska A. et al.: Physical Sciences Reviews 2020, 5(12), 20190102. https://doi.org/10.1515/psr-2019-0102
- [47] Dana H.R., Ebrahimi F.: Polymer Engineering and Science 2022, 63(1), 22. https://doi.org/10.1002/pen.26193
- [48] Stefaniak K., Masek A.: Materials 2021, 14(18), 5254. https://doi.org/10.3390/ma14185254
- [49] Balla E., Daniilidis V., Karlioti G. et al.: Polymers 2021, 13(11), 1822. https://doi.org/10.3390/polym13111822
- [50] Tsuji H., Ohsada K., Arakawa Y.: Polymer 2021, 228, 123954. https://doi.org/10.1016/j.polymer.2021.123954
- [51] Sun C., Zheng Y., Xu S. et al.: ACS Macro Letters 2021, 10(8), 1023. https://doi.org/10.1021/acsmacrolett.1c00394
- [52] Guo M., Wu W., Wu W. et al.: ACS Omega 2022, 7, 41412. https://doi.org/10.1021/acsomega.2c05198
- [53] Omar A.A., Mohd Hanafi M.H., Razak N.H. et al.: Chemical Engineering Transaction 2021, 89, 241. https://doi.org/10.3303/CET2189041
- [54] Sun Y., Zheng Z., Wang Y. et al.: Journal of Polymer Research 2022, 29, 422. https://doi.org/10.1007/s10965-022-03274-1
- [55] Tripathi N., Misra M., Mohanty A.K.: ACS Engineering Au 2021, 1(1), 7. https://doi.org/10.1021/acsengineeringau.1c00011
- [56] Zhao X., Liu J., Li J. et al.: International Journal of Biological Macromolecules 2022, 218, 115. https://doi.org/10.1016/j.ijbiomac.2022.07.091
- [57] Russo P., Passaro J., Dib A. et al.: Composites Part C: Open Access 2024, 15, 100511. https://doi.org/10.1016/j.jcomc.2024.100511
- [58] Patti A., Acierno D., Latteri A. et al.: Polymers 2020, 12(12), 2197. https://doi.org/10.3390/polym12102197
- [59] Grassia L., Pastore Carbone M.G., Mensitieri G. et al.: Polymer 2011, 52(18), 4011. https://doi.org/10.1016/j.polymer.2011.06.058
- [60] Huang T., Yamaguchi M.: Journal of Applied Polymer Science 2017, 134(24), 44960. https://doi.org/10.1002/app.44960
- [61] Van der Oever M.J.A., Beck B., Müssig J.: Composites Part A: Applied Science and Manufacturing 2010, 41(11), 1628. https://doi.org/10.1016/j.compositesa.2010.07.011
- [62] Zaaba N.F., Jaafar M.: Polymer Engineering and Science 2020, 60(9), 2061. https://doi.org/10.1002/pen.25511
- [63] Ho K.L.G., Pometto III A.L., Hinz P.N.: Journal of Environmental Polymer Degradation 1999, 7, 83. https://doi.org/10.1023/A:1021808317416
- [64] Mitchell M.K., Hirt D.E.: Polymer Engineering and Science 2014, 55(7), 1652. https://doi.org/10.1002/pen.24003
- [65] Karamanlioglu M., Alkan U.: Thermal Science 2019, 23, S383. https://doi.org/10.2298/TSCI181111051K
- [66] Karamanlioglu M., Robson G.D.: Polymer Degradation and Stability 2013, 98(10), 2063. https://doi.org/10.1016/j.polymdegradstab.2013.07.004
- [67] Shalem A., Yahezkeli O., Fishman A.: Applied Microbiology and Biotechnology 2024, 108, 413. https://doi.org/10.1007/s00253-024-13212-4
- [68] Shekhar N., Mondal A.: Polymer Bulletin 2024, 81, 11421. https://doi.org/10.1007/s00289-024-05252-7
- [69] de Freitas A.dS.M., da Silva A.P.B., Montagna L.S. et al.: Journal of Biomaterials Science, Polymer Edition 2022, 33(7), 900. https://doi.org/10.1080/09205063.2021.2021351
- [70] Diyana Z.N., Jumaidin R., Selamat M.Z. et al.: Polymers 2021, 13(9), 1396. https://doi.org/10.3390/polym13091396
- [71] Drakopoulos S.X., Vryonis O., Špitalský Z. et al.: Biomacromolecules 2024, 25(9), 5938. https://doi.org/10.1021/acs.biomac.4c00602
- [72] Li H., Huneault M.A.: Journal of Applied Polymer Science 2010, 119(4), 2439. https://doi.org/10.1002/app.32956
- [73] Diyana Z.N., Jumaidin R., Selamat M.Z. et al.: Polymers 2021, 13(9), 1396. https://doi.org/10.3390/polym13091396
- [74] Surendren A., Mohanty A.K., Liu Q. et al.: Green Chemistry 2022, 24, 8606. https://doi.org/10.1039/D2GC02169B
- [75] Rahardiyan D., Moko E.M., Tan J.S. et al.: Enzyme and Microbial Technology 2023, 168, 110260. https://doi.org/10.1016/j.enzmictec.2023.110260
- [76] Villadiego K.M., Arias Tapia M.J., Useche J. et al.: Journal of Polymers and the Environment 2022, 30, 75. https://doi.org/10.1007/s10924-021-02207-1
- [77] Bulatović V.O., Mandić V., Kučić Grgić D. et al.: Journal of Polymers and the Environment 2021, 29, 492. https://doi.org/10.1007/s10924-020-01874-w
- [78] Jeziórska R., Szadkowska A., Studziński M. et al.: Polymers 2023, 15(7), 1762. https://doi.org/10.3390/polym15071762
- [79] Aranaz I., Alcántara A.R., Civera M.C. et al.: Polymers 2021, 13(19), 3256. https://doi.org/10.3390/polym13193256
- [80] Kou S., Peters L.M., Mucalo M.R.: International Journal of Biological Macromolecules 2021, 169, 85. https://doi.org/10.1016/j.ijbiomac.2020.12.005
- [81] Tanpichai S., Srimarut Y., Woraprayote W. et al.: International Journal of Biological Macromolecules 2022, 213, 534. https://doi.org/10.1016/j.ijbiomac.2022.05.193
- [82] Cheng Z., Li J., Su M. et al.: ACS Applied Polymer Materials 2024, 6(5), 2877. https://doi.org/10.1021/acsapm.3c03115
- [83] Cazón P., Vázquez M.: “Applications of Chitosan as Food Packaging Materials” in “Sustainable Agriculture Reviews 36” (edit. Crini G., Lichtfouse E.), Springer, Cham 2019. p. 81. https://doi.org/10.1007/978-3-030-16581-9_3
- [84] Flórez M., Guerra-Rodríguez E., Cazón P. et al.: Food Hydrocolloids 2022, 124(B), 107328. https://doi.org/10.1016/j.foodhyd.2021.107328
- [85] Matica A., Menghiu G., Ostafe V.: New Frontiers in Chemistry 2017, 26(1), 75.
- [86] Thakur M., Majid I., Hussain S. et al.: Packaging Technology and Science 2021, 34(8), 449. https://doi.org/10.1002/pts.2572
- [87] Punyodom W., Limwanich W., Meepowpan P. et al.: Designed Monomers and Polymers 2021, 24(1), 89. https://doi.org/10.1080/15685551.2021.1908657
- [88] Alix S., Mahieu A., Terrie C. et al.: European Polymer Journal 2013, 49(6), 1234. https://doi.org/10.1016/j.eurpolymj.2013.03.016
- [89] Oney-Montalvo J.E., Dzib-Cauich D.A., de Jesús Ramírez-Rivera E. et al.: Czech Journal of Food Sciences 2024, 42(2), 77. https://doi.org/10.17221/200/2023-CJFS
- [90] Jarrett P., benedict C.V., Bell J.P. et al.: “Mechanism of the Biodegradation of Polyaprolactone: in “Polymers as Biomaterials” (edit. Shalaby S.W.,hoffman A.S., Ratner B.D., Horbett T.A.), Springer, New York 1984, p. 181. https://doi.org/10.1007/978-1-4613-2433-1_13
- [91] Richert A., Dąbrowska G.B.: International Journal of Biological Macromolecules 2021, 176, 226. https://doi.org/10.1016/j.ijbiomac.2021.01.202
- [92] Oun A.A., Shin G.H., Rhim J.W. et al.: Food Packaging and Shelf Life 2022, 34, 100991. https://doi.org/10.1016/j.fpsl.2022.100991
- [93] Rahman L., Goswami J.: Journal of Packaging Technology and Research 2023, 7, 1. https://doi.org/10.1007/s41783-022-00146-3
- [94] Marušincová H., Husárová L., Růžička J. et al.: International Biodeterioration and Biodegradation 2013, 84, 21. https://doi.org/10.1016/j.ibiod.2013.05.023
- [95] Chemn J., Zhang Y., Du G.C. et al.: Enzyme and Microbial Technology 2007, 40(7), 1686. https://doi.org/10.1016/j.enzmictec.2006.09.010
- [96] Halima N.B.: RSC Advanced 2016, 6, 39823. https://doi.org/10.1039/C6RA05742J
- [97] Rajgond V., Mohite A., More N. et al.: Polymer Bulletin 2024, 81, 5703. https://doi.org/10.1007/s00289-023-04998-w
- [98] Barletta M., Aversa C., Ayyoob M. et al.: Progress in Polymer Science 2022, 132, 101579. https://doi.org/10.1016/j.progpolymsci.2022.101579
- [99] Li C., Wang B., Shang Z. et al.: Industrial and Engineering Chemistry Research 2023, 62(18), 7250. https://doi.org/10.1021/acs.iecr.3c00158
- [100] Di Lorenzo M.L.: Polymer Reviews 2021, 61(3), 457.https://doi.org/10.1080/15583724.2020.1850475
- [101] Rafiqah S.A., Khalina A., Harmaen A.S. et al.: Polymers 2021, 13(9), 1436. https://doi.org/10.3390/polym13091436
- [102] Nelson T.F., Baumgartner R., Jaggi M. et al.: Nature Communications 2022, 13, 5691. https://doi.org/10.1038/s41467-022-33064-8
- [103] Nomadolo N., Dada O.E., Swanepoel A. et al.: Polymers 2022, 14(9), 1894. https://doi.org/10.3390/polym14091894
- [104] Lee J., Park C., Tsang Y.F. et al.: ChemSusChem 2024, 17(23), e202401070. https://doi.org/10.1002/cssc.202401070
- [105] Mahata D., Karthikeyan S., Goddse R. et al.: Polymer Science, Series C 2021, 63, 102. https://doi.org/10.1134/S1811238221010045
- [106] Huang S., Li B., Huang S. et al.: European Polymer Journal 2023, 200, 112492. https://doi.org/10.1016/j.eurpolymj.2023.112492
- [107] Chuakhao S., Rodríguez J.T., Lapnonkawow S. et al.: Polymer Testing 2024, 132, 108383. https://doi.org/10.1016/j.polymertesting.2024.108383
- [108] Ye H., Li Q., Li J. et al.: Chinese Chemical Letters 2025, 36(1), 109861. https://doi.org/10.1016/j.cclet.2024.109861
- [109] Ferreira F.V., Dufresne A., Pinheiro I.F. et al.: European Polymer Journal 2018, 108, 274. https://doi.org/10.1016/j.eurpolymj.2018.08.045
- [110] De Melo R.N., de Souza Hassemer G., Steffens J. et al.: 3 Biotech 2023, 13, 204. https://doi.org/10.1007/s13205-023-03633-9
- [111] Anuar A., Yu Q., Jariyavidyanont K. et al.: Macromolecules 2024, 57(17), 8507. https://doi.org/10.1021/acs.macromol.4c00938
- [112] Garcia-Chumillas S., Guerrero-Murcia T., Nicolas- Liza M. et al.: Frontiers in Materials 2024, 11, 1405483. https://doi.org/10.3389/fmats.2024.1405483
- [113] Adak S., Kayalvizhi R., Bishai M. et al.: Biocatalysis and Agricultural Biotechnology 2024, 60, 103288. https://doi.org/10.1016/j.bcab.2024.103288
- [114] Mohanan N., Wong M.C.H., Budisa N. et al.: International Journal of Molecular Science 2023, 24(5), 4501. https://doi.org/10.3390/ijms24054501
- [115] Read T., Chaléat C., Laycock B. et al.: Marine Pollution Bulletin 2024, 209(A), 117114. https://doi.org/10.1016/j.marpolbul.2024.117114
- [116] Bors W., Michel C.: Annals of the New York Academy of Sciences 2006, 957(1), 57. https://doi.org/10.1111/j.1749-6632.2002.tb02905.x
- [117] Zhu F.: Food Chemistry 2021, 359, 129871. https://doi.org/10.1016/j.foodchem.2021.129871
- [118] Belščak-Cvitanović A., Durgo K., Huđek A. et al.: Overview of polyphenols and their proper¬ties” in “Polyphenols: Properties, Recovery, and Applications” (edit. Galanakis C.M.), Woodhead PublishingDuxford, Cambridge, Kidlington 2018, p. 3. https://doi.org/10.1016/B978-0-12-813572-3.00001-4
- [119] Chen C., Tang Z., Ma Y. et al.: Progress in Organic Coatings 2018, 123, 176. https://doi.org/10.1016/j.porgcoat.2018.07.001
- [120] Yong H., Liu J.: Comprehensive Reviews in Food Science and Food Safety 2021, 20(2), 2106. https://doi.org/10.1111/1541-4337.12697
- [121] Zhang W., Roy S., Ezati P. et al.: Trends in Food Science and Technology 2023, 136, 11. https://doi.org/10.1016/j.tifs.2023.04.004
- [122] Roman M.J., Decker E.A., Goddart J.M.: Colloid and Interface Science Communications 2016, 13, 10. https://doi.org/10.1016/j.colcom.2016.06.002
- [123] Costa M., Sezgin-Bayindir Z., Losada-Barreiro S. et al.: Biomedicines 2021, 9(12), 1909. https://doi.org/10.3390/biomedicines9121909
- [124] Liu Y., Wang J., Sun Z.: Polymers 2024, 16(19), 2752. https://doi.org/10.3390/polym16192752
- [125] Milinčić D.D., Popović D.A., Lević S.M. et al.: Nanomaterials 2019, 9(11), 1629. https://doi.org/10.3390/nano9111629
- [126] Sahraeian S., Abdollahi B., Rashidinejad A.: International Journal of Biological Macromolecules 2024, 208, 135714. https://doi.org/10.1016/j.ijbiomac.2024.135714
- [127] Radhalakshmi V., Raman M., Joy M.R..: International Journal of Biological Macromolecules 2023, 246, 125751. https://doi.org/10.1016/j.ijbiomac.2023.125751
- [128] Banbettaieb N., Mlaouah E., Moundanga S. et al.: Journal of the Science of Food and Agriculture 2023, 103(3), 1115. https://doi.org/10.1002/jsfa.12106
- [129] Mariño-Cortegoso S., Stanzione M., Andrade M.A. et al.: Food Control 2022, 140, 109128. https://doi.org/10.1016/j.foodcont.2022.109128
- [130] Carneiro Lins Perazzo K.K.N., de Vasconcelos Conceição A.C., Pires dos Santos J.C. et al.: PLOS One 2014, 9(9), e105199. https://doi.org/10.1371/journal.pone.0105199
- [131] Pulicharla R., Marques C., Das R.K. et al.: International Journal of Biological Macromolecules 2016, 88, 171. https://doi.org/10.1016/j.ijbiomac.2016.03.036
- [132] Jeong S., Lee H.G., Cho C.H. et al.: Journal of Food Science 2021, 86(3), 1004. https://doi.org/10.1111/1750-3841.15626
- [133] Shahrampour D., Razavi S.M.A., Sadeghi A.: Journal of Food Measurement and Characterization 2023, 17, 1058. https://doi.org/10.1007/s11694-022-01670-1
- [134] Gómez-Bachar l., Vilcovsky M., González-Seligra P. et al.: International Journal of Biological Macromolecules 2024, 268(1), 131464. https://doi.org/10.1016/j.ijbiomac.2024.131464
- [135] Łopusiewicz Ł., Zdanowicz M, Macieja S. et al.: Polymers 2021, 13(11), 1798. https://doi.org/10.3390/polym13111798
- [136] Olonisakin K., Wen A., He S. et al.: Food and Bioprocess Technology 2023, 16, 1525. https://doi.org/10.1007/s11947-023-02997-3
- [137] Albuquerque R.M.B., Meira H.M., Silva I.D.L. et al.: Polymers and Polymer Composites 2020, 29(4), 259. https://doi.org/10.1177/0967391120912098
- [138] Kaczor A., Barańska M., Czamara K.: „Overview of Nomneclature, Structures, Occurrence, and Functions” in “Carotenoids: Nutrition, Analysis and Technology”, John Wiley and Sons, Chichester 2016. https://doi.org/10.1002/9781118622223.ch1
- [139] Roy S., Deshmukh R.K., Tripathi S. et al.: Foods 2023, 12(21), 4011. https://doi.org/10.3390/foods12214011
- [140] Chhoden T., Aggrawal P., Singh A. et al.: Biomass Conversion and Biorefinery 2024. https://doi.org/10.1007/s13399-024-05339-1
- [141] Stoll L., Rech R., Hickmann Flôres S. et al.: Journal of Applied Polymer Science 2018, 135(33), 46585. https://doi.org/10.1002/app.46585
- [142] Fabra M.J., López-Rubio A., Sentandreu E. et al.: Starch 2015, 68(7-8), 603. https://doi.org/10.1002/star.201500154
- [143] Drosou C., Krokida M., Biliaderis C.G.: Food Hydrocolloids 2022, 133, 107949. https://doi.org/10.1016/j.foodhyd.2022.107949
- [144] Jiang M., Zhang Y.: Journal of Agriculture and Food Research 2023, 11, 100488. https://doi.org/10.1016/j.jafr.2022.100488
- [145] Sutil G.A., Andrade K.S., Rebelatto E.A. et al.: Trends in Food Science and Technology 2022, 120, 349. https://doi.org/10.1016/j.tifs.2022.01.025
- [146] Xiong Y., Li S., Warner R.D. et al.: Food Control 2020, 114, 107226. https://doi.org/10.1016/j.foodcont.2020.107226
- [147] Stoll L., Rech R., Hickmann Flôres S. et al.: Food Chemistry 2019, 281, 213. https://doi.org/10.1016/j.foodchem.2018.12.100
- [148] Lopes Carvalho R., Freitas Cabral M., Germano T.A. et al.: Postharvest Biology and Technology 2016, 113, 29. https://doi.org/10.1016/j.postharvbio.2015.11.004
- [149] Queiroz Assis R., Pagno C.H., Haas Costa T.M. et al.: Packaging Technology and Science 2018, 31(3), 157. https://doi.org/10.1002/pts.2364
- [150] Hamdi M., Nasri R., Li S. et al.: Food Hydrocolloids 2019, 89, 802. https://doi.org/10.1016/j.foodhyd.2018.11.062
- [151] Calegari Lino R., Matos de Carvalho S., Montanheiro Noronha C. et al.: Food Research International 2022, 160, 111750. https://doi.org/10.1016/j.foodres.2022.111750
- [152] Soni N., Roy D., Patel D.M. et al.: Discover Chemistry 2025, 2, 57. https://doi.org/10.1007/s44371-025-00132-z
- [153] Macieja S., Bartkowiak A., Mizielińska M.: Applied Sciences 2025, 15(4), 2099. https://doi.org/10.3390/app15042099
- [154] Kokande A.M., Surana K.R., Jain V.N. et al.: “Overview and Recent Advances of Vitamins” in “Preventive and Threapeutic Role of Vitamins as Naturauceticals” (edit. Surana K.R., Ahire E.D., Keservani R.J., Kesharwani R.K.), Apple Academic Press, New York 2024.
- [155] Ghosh T., Bhagya Raj G.V.S., Dash K.K.: Measurement: Food 2022, 7, 100049. https://doi.org/10.1016/j.meafoo.2022.100049
- [156] Frangopoulos T., Marinopoulou A., Petridis D. et al.: Food and Bioprocess Technology 2025, 18, 5164. https://doi.org/10.1007/s11947-025-03757-1
- [157] Dumitriu R.P., Stoleru E., Mitchell G.R. et al.: Molecules 2021, 26(18), 5498. https://doi.org/10.3390/molecules26185498
- [158] Silva da Costa D., Nogueira dos Santos L., Ferreira N.R. et al.: British Food Journal 2024, 126(13), 226. https://doi.org/10.1108/BFJ-04-2023-0292
- [159] Puszczykowska N., Rytlewski P., Maćko M. et al.: Environments 2022, 9(5), 56. https://doi.org/10.3390/environments9050056
- [160] Chatli M.K., Kaura S., Jairath M. et al.: Animal Production Science 2014, 54(9), 1328. https://doi.org/10.1071/AN14346
- [161] Parin F.N.: „Retrospective, Perspective and Prospective of B-Complex Vitamins: Encapsulation of Vitamins and Release from Vitamin-Loaded Polymers” in “B-Complex Vitamins - Sources, Intakes and Novel Applications” (LeBlanc J.G.), IntechOpen 2022. https://doi.org/10.5772/intechopen.99284
- [162] Fiore A., Park S., Volpe S. et al.: Food Packaging and Shelf Life 2021, 29, 100708. https://doi.org/10.1016/j.fpsl.2021.100708
- [163] Khuntia A., Kumar R., Premjit Y. et al.: Journal of Food Process Engineering 2022, 45(9), e14075. https://doi.org/10.1111/jfpe.14075
- [164] Hussain R., Batool S.A., Aizaz A. et al.: ACS Omega 2023, 8(45), 42301. https://doi.org/10.1021/acsomega.3c04397
- [165] Singh D.P., Packirisamy G.: Food Chemistry: Molecular Sciences 2022, 4, 100085. https://doi.org/10.1016/j.fochms.2022.100085
- [166] Aresta A., Calvano C.D., Trapani A. et al.: Journal of Nanoparticle Science 2013, 15, 1592. https://doi.org/10.1007/s11051-013-1592-7
- [167] Chauhan K., Rao A.: Heliyon 2024, 10(16), e35815. https://doi.org/10.1016/j.heliyon.2024.e35815
- [168] Aytac Z., Keskin N.O.S., Tekinay T. et al.: Journal of Applied Polymer Science 2017, 134(13), 44858. https://doi.org/10.1002/app.44858
- [169] Dopico-Garcia M.S., López-Vilariñó J.M., González- Rodríguez M.V.: Journal of Agricultural and Food Chemistry 2007, 55(8), 3225. https://doi.org/10.1021/jf070102+
- [170] Pereira R.P., de Oliveira D., Garcia Rocha M. et al.: Journal of the Mechanical Behavior and Biomedical Materials 2024, 157, 106652. https://doi.org/10.1016/j.jmbbm.2024.106652
- [171] Ortiz-Vasquez H., Shin J., Soto-Valdez H. et al.: Polymer Testing 2011, 30(5), 463. https://doi.org/10.1016/j.polymertesting.2011.03.006
- [172] 6th Annual Report on Carcinogens, Summary 1991, U.S. Department of Health and Human Service, Research Triangle Park 1991. p. 113.
- [173] Ito N., Fukishima S., Tsuda H.: CRC Critical Reviews in Toxicology 1985, 15(2), 109. https://doi.org/10.3109/10408448509029322
- [174] Bredsdorff L., Olesen P.T., Pedersen G. A. et al.: DTU Updated assessment of BHA and BHT, Oct. 07, 2020.
- [175] Nisa I., Ashwar B.A., Shah A. et al.: Journal of Food Science and Technology 2015, 52, 7245. https://doi.org/10.1007/s13197-015-1859-3
- [176] Felter S.P., Zhang X., Thompson C.: Regulatory Toxicology and Pharmacology 2021, 121, 104887. https://doi.org/10.1016/j.yrtph.2021.104887
- [177] Jamshidian M., Tehrany E.A., Desobry S.: Food Control 2012, 28(2), 445. https://doi.org/10.1016/j.foodcont.2012.05.005
- [178] Ashwar B.A., Shah A., Gani A. et al.: Starch 2015, 67, 294. https://doi.org/10.1002/star.201400193
- [179] Hu Y., Feng X., Xu H. et al.: International Journal of Biological Macromolecules 2024, 283(2), 137637. https://doi.org/10.1016/j.ijbiomac.2024.137637
- [180] Wang W., Xiong P., Zhang H. et al.: Environmental Research 2021, 201, 111531. https://doi.org/10.1016/j.envres.2021.111531
- [181] https://www.ecfr.gov/current/title-21/chapter-I/subchapter-B/part-175 (access date 15.04.2025)
- [182] https://eur-lex.europa.eu/eli/reg/2004/1935/2021-03-27 (access date 15.04.2025)
- [183] https://www.sgs.com/en/news/2020/06/safeguards-09220-japan-publishes-positive-list-for-food-contact-synthetic-resin-materials (access date 15.04.2025)
- [184] https://www.cirs-group.com/en/food/positive-list-of-china-food-contact-additives-gb-9685 (access date 15.04.2025)
- [185] Hanafi, Nurdiani, Siriat S.M. et al.: Oriental Journal of Chemistry 2019, 35(2). http://doi.org/10.13005/ojc/350207
- [186] Thakur V., Satapathy B.K.: “Migration Concerns of Biopolymer-Based Food Packaging” in “Agro‐Waste Derived Biopolymers and Biocomposites: Innovations and Sustainability in Food Packaging” (edit. Kumar S., Mukherjee A., Katyiar V.), Scrivener Publishing LLC, Hoboken 2024, p. 421. https://doi.org/10.1002/9781394175161.ch15
- [187] https://eur-lex.europa.eu/legal-content/PL/ALL/?uri=CELEX%3A32008R1333(access date 15.04.2025)
- [188] https://www.fda.gov/ (access date 15.04.2025)
- [189] Salgado P.R., Di Giorgio L., Musso Y.S. et al.: Frontiers in Sustainable Food Systems 2021, 5, 630393. https://doi.org/10.3389/fsufs.2021.630393
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c192c532-78f4-4096-b101-55f479da3764
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.