PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Decision support for the intermodal terminal layout designing

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wspomaganie decyzji w projektowaniu infrastruktury terminala intermodalnego
Języki publikacji
EN
Abstrakty
EN
The article presents the issue of container handling processes at a rail-road intermodal terminal. In the article, we have focused on the problem of a terminal layout design from the point of view of parking lots for external trucks. The main purpose of this article is the assessment of the necessary parking lots for the trucks considering daily turnover of containers and the trucks appointment time windows. We analyze how the length of the truck’s appointment time windows as well as the difficulties in containers loading operations and a number of handling equipment influence the necessary parking lots for trucks in the intermodal terminal. The trucks planned for loading of import containers may arrive at the terminal before the loading moment that is specified in crane operations schedule. The container handling time is given by a probability distribution. The equations defining the most important elements of the considered problem were presented in the general form. The special case of this model has been developed in the FlexSim simulation software. Based on the simulation research and calculations we pointed out that right truck’s appointment time windows can significantly reduce necessary parking lots at the yard. The literature analysis presented in the article indicates that most of the research in the field of intermodal terminal is focused on operations in container ports. There is lack of literature considering rail-road terminal layout planning in terms of the necessary parking lots and truck’s appointment time windows.
PL
W artykule przedstawiono zagadnienie procesów obsługi kontenerów w kolejowo-drogowym terminalu intermodalnym. W artykule skupiono się na problemie projektowania układu terminali z punktu widzenia niezbędnych parkingów dla pojazdów ciężarowych dowożących/odwożących kontenery do/z terminala. Głównym celem artykułu jest wyznaczenie niezbędnej liczby miejsc parkingowych dla ciężarówek, biorąc pod uwagę dzienny obrót kontenerów, a także okna czasowe awizacji pojazdów ciężarowych. Analizowano, w jaki sposób szerokość okien czasowych awizacji pojazdów ciężarowych a także trudności w operacjach załadunku kontenerów i liczba urządzeń przeładunkowych wpłyną na niezbędną liczbę miejsc parkingowych dla pojazdów ciężarowych na placu terminala intermodalnego. Założono, że ciężarówki planowane do załadunku kontenerów importowych mogą przybyć do terminalu przed momentem załadunku określonym w harmonogramie pracy suwnicy. Założono również, że czas przeładunku kontenera wynika z rozkładu prawdopodobieństwa. Równania definiujące najważniejsze elementy rozważanego problemu zostały przedstawione w formie ogólnej. Badane problem zamodelowano w narzędziu symulacyjnym FlexSim. Na podstawie badań symulacyjnych i przedstawionych obliczeń wskazano, że właściwe ustalenie okien czasowych awizacji pojazdów ciężarowych może znacznie zmniejszyć liczbę potrzebnych miejsc parkingowych na terminalu. Analiza literatury przedstawiona w artykule wskazuje, że większość badań w obszarze terminali intermodalnych koncentruje się na optymalizacji operacji w portach kontenerowych. Brakuje literatury na temat układu terminali intermodalnych z punktu widzenia liczby niezbędnych miejsc parkingowych dla pojazdów ciężarowych.
Rocznik
Strony
611--630
Opis fizyczny
Bibliogr. 48 poz., il., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Transport, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Transport, Warsaw, Poland
  • Warsaw University of Technology, Faculty of Transport, Warsaw, Poland
  • ID International, Ostrava, Czech Republic
  • Warsaw University of Technology, Faculty of Transport, Warsaw, Poland
Bibliografia
  • [1] C. Abacoumkin, and A. Ballis, “Development of an expert system for the evaluation of conventional and innovative technologies in the intermodal transport area”, European Journal of Operational Research, vol. 152, pp. 410-419, 2004. https://doi.org/10.1016/S0377-2217(03)00033-X
  • [2] T. Ambra, A. Caris, & C. Macharis, “Towards freight transport system unification: reviewing and combining the advancements in the physical internet and synchromodal transport research”, International Journal of Production Research, vol. 57(6), pp. 1606-1623, 2019. https://doi.org/10.1080/00207543.2018.1494392
  • [3] P. Arnold, D. Peeters, I. Thomas, “Modelling a rail/road intermodal transportation system”, Transportation Research Part E: Logistics and Transportation Review, vol. 40(3), pp. 255-270, 2004. https://doi.org/10.1016/j.tre.2003.08.005
  • [4] A. Ballis, J. Golias, “Comparative evaluation of existing and innovative railroad freight transport terminals”, Transportation Research Part A: Policy and Practice, vol. 36, pp. 593-611, 2002. https://doi.org/10.1016/S0965-8564(01)00024-6
  • [5] A. Ballis, J. Golias, “Towards the improvement of a combined transport chain operation”, European Journal of Operational Research, vol. 152, pp. 420-436, 2004. https://doi.org/10.1016/S0377-2217(03)00034-1
  • [6] T. Benna, M. Gronalt, “Generic simulation for rail-road container terminals”, in Winter Simulation Conference, pp. 2656-2660, 2008. https://doi.org/10.1109/WSC.2008.4736381
  • [7] L. Bodin, “Routing and scheduling of vehicles and crews, the state of the art”, Comput. Oper. Res., vol. 10(2), pp. 63-211, 1983. https://doi.org/10.1016/0305-0548(83)90030-8
  • [8] G. Chen, K. Govindan, Z. Yang, “Managing truck arrivals with time windows to alleviate gate congestion at container terminals”, International Journal of Production Economics, vol. 141(1), pp. 179-188, 2013. https://doi.org/10.1016/j.ijpe.2012.03.033
  • [9] G. Chen, K. Govindan, Z. Yang, T. Choi, L. Jiang, “Terminal appointment system design by non-stationary M(t)/Ek/c(t) queueing model and genetic algorithm”, International Journal of Production Economics, vol. 146(2), pp. 694-703, 2013. https://doi.org/10.1016/j.ijpe.2013.09.001
  • [10] X. Chen, X. Zhou, G. List, “Using time-varying tolls to optimize truck arrivals at ports”, Transportation Research Part E, vol. 47(6), pp. 965-982, 2011. https://doi.org/10.1016/j.tre.2011.04.001
  • [11] M. Cieśla, A. Sobota, M. Jacyna, “Multi-Criteria Decision Making Process in Metropolitan Transport Means Selection Based on the Sharing Mobility Idea”, Sustainability, vol. 12(17), 7231; 2020. https://doi.org/10.3390/su12177231
  • [12] C. Dong, R. Boute, A. McKinnon, M. Verelst, “Investigating synchromodality from a supply chain perspective” Transportation Research Part D: Transport and Environment, vol. 61, pp. 42-57, 2018. https://doi.org/10.1016/j.trd.2017.05.011
  • [13] M. Duinkerken, J. Ottjes, “A simulation model for automated container terminals”, in Proceedings of the Business and Industry Simulation Symposium, vol. 10, pp. 134-139, 2000.
  • [14] M. Fleming, N. Huynh, Y. Xie, “An agent-based simulation tool for evaluating pooled queue performance at marine container terminals”, Transportation Research Record: Journal of the Transportation Research Board, vol. 2330, pp. 103-112, 2013. https://doi.org/10.3141/2330-14.
  • [15] G. Froyland, T. Koch, N. Megow, E. Duane, H. Wren, „Optimizing the landside operation of a container terminal”, OR Spectrum, vol. 30(1), pp. 53-75, 2000. https://doi.org/10.1007/s00291-007-0082-7
  • [16] G. Giuliano, T. O’Brien, “Reducing port-related truck emissions: the terminal gate appointment system at the ports of Los Angeles and Long Beach”, Transportation Research Part D: Transport and Environment, vol.12(7), pp.460-47, 2007. https://doi.org/10.1016/j.trd.2007.06.004
  • [17] R. Giusti, C. Iorfida, D. Manerba, S. Musso, G. Perboli, S. Yuan, “Sustainable and de-stressed international supply-chains through the SYNCHRO-NET approach”, Sustainability, vol. 11(4), 1083, 2019. https://doi.org/10.3390/su11041083
  • [18] M., Gronalt, T. Benna, M. Posset, “Strategic planning of hinterland container terminals: A simulation based procedure”, in GI Jahrestagung, 1st ed., pp. 425-428, 2007.
  • [19] C.Q. Guan, R. Liu, “Container terminal gate appointment system optimization”, Maritime Economics & Logistics, vol. 11(4), pp. 378-398, 2009. https://doi.org/10.1057/mel.2009.13.
  • [20] C.Q. Guan, R. Liu “Modeling Gate congestion of marine container terminals, truck waiting cost, and optimization”, Transportation Research Record: Journal of the Transportation Research Board, vol. 2100, pp. 58-67, 2009. https://doi.org/10.3141/2100-07
  • [21] P. Guo, W. Cheng, Z. Zhang, M. Zhang, J. Liang, “Gantry crane scheduling with interference constraints in railway container terminals”, International Journal of computational intelligence systems, vol. 6(2), 244-260, 2013. https://doi.org/10.1080/18756891.2013.768444
  • [22] M. Izdebski, I. Jacyna-Gołda, P. Gołębiowski [i in.], „The optimization tool supporting supply chain management in the multi-criteria approach, Archives of Civil Engineering, 66(3), 505-524, 2020.
  • [23] R. Jachimowski, “Review of transport decision problems in the marine intermodal terminal”, Archives of Transport, vol. 44(4), pp. 35-45, 2018. https://doi.org/10.5604/01.3001.0010.6160
  • [24] R. Jachimowski, E. Szczepański, M. Kłodawski, K. Markowska, J. Dąbrowski, “Selection of a container storage strategy at the rail-road intermodal terminal as a function of minimization of the energy expenditure of transshipment devices and CO2 emissions”, Annual Set The Environment Protection, vol. 20(2), pp. 965-988, 2018.
  • [25] M. Jacyna, R. Jachimowski, E. Szczepański, M. Izdebski, “Road vehicle sequencing problem in the rail-road intermodal terminal - simulation research”, Bulletin of the Polish Academy of Sciences. Technical Sciences, vol. 68(5), pp. 1135-1148. https://doi.org/10.24425/bpasts.2020.134643
  • [26] M. Jacyna, M. Wasiak, K. Lewczuk, M. Kłodawski, „Simulation model of transport system of Poland as a tool for developing sustainable transport”, Archives of Transport, vol. 31(3), pp. 23-35, 2014. https://doi.org/10.5604/08669546.1146982
  • [27] I. Jacyna-Gołda, J. Żak, P. Gołębiowski, „Models of traffic flow distribution for various scenarios of the development of proecological transport system”, Archives of Transport, vol. 32(4), pp.17-28, 2014. https://doi.org/10.5604/08669546.1146994
  • [28] M. Jacyna, M. Izdebski, E. Szczepański, P. Gołda, “The task assignment of vehicles for a production company”, Symmetry, vol. 10(11), 551, 2018. https://doi.org/10.2507/IJSIMM17(3)438
  • [29] I. Jacyna-Gołda, M. Izdebski, J. Murawski, “The assumptions to the ant algorithm in the assignment of vehicles to tasks in the production companies”, Transport Means - Proceedings of the International Conference, pp. 985-990, 2017.
  • [30] M. Jacyna, I. Semenov, “Models of vehicle service system supply under information uncertainty”, Eksploatacja i Niezawodnosc, vol. 22(4), pp. 694-704, 2020. https://doi.org/10.17531/ein.2020.4.13
  • [31] M. Kłodawski, R. Jachimowski, I. Jacyna-Golda, M. Izdebski, „Simulation analysis of order picking efficiency with congestion situations”, International Journal of Simulation Modelling, vol. 17(3), pp. 431-443, 2018.
  • [32] L. J. Kondratowicz, “Simulation methodology for intermodal freight transportation terminals”, Simulation, vol. 55, pp. 49-59, 1990. https://doi.org/10.1016/j.ejor.2017.11.061
  • [33] E. Kozan, “Optimum capacity for intermodal container terminals”, Transportation Planning and Technology, vol. 29, pp. 471-482, 2006. https://doi.org/10.1080/03081060601075716
  • [34] E. Kozłowski, A. Borucka, A. Świderski, “Application of the logistic regression for determining transition probability matrix of operating states in the transport systems”, Eksploatacja i Niezawodnosc - Maintenance and Reliability, 22(2), 192-200, 2020. http://dx.doi.org/10.17531/ein.2020.2.2.
  • [35] B. K. Lee, B. J. Jung, K. Kim, S. Park, J. Seo, “A simulation study for designing a rail terminal in a container port”, in Proceedings of the 38th conference on Winter simulation, WSC '06, Winter Simulation Conference, pp. 1388-1397, 2006. https://doi.org/10.1109/WSC.2006.323239
  • [36] K. Lewczuk, “The concept of genetic programming in organizing internal transport processes”, Archives of Transport, vol. 34(2), pp. 61-74, 2014. https://doi.org/10.5604/08669546.1169213
  • [37] C. Minh, N. Huynh, “Planning-level tool for assessing and optimizing marine container terminal gate layout”, Transportation Research Record: Journal of the Transportation Research Board, vol. 2409, pp. 31-39, 2014. https://doi.org/10.3141/2409-05
  • [38] R. Montemanni, D. Smith, A. Rizzoli, L. Gambardella, “Sequential ordering problems for crane scheduling in port terminals”, International Journal of Simulation and Process Modelling, vol. 5(4), pp. 348-361, 2009. https://doi.org/10.1504/IJSPM.2009.032597
  • [39] J. A. Ottjes, M. B. Duinkerken, J. Evers, R. Dekker, “Robotised inter terminal transport of containers”, in Proc. of the 8th European Simulation Symposium, pp. 621-625, 1996.
  • [40] A. Rizzoli, N. Fornara, L. Gambardella, “A simulation tool for combined rail/road transport in intermodal terminals” Mathematics and Computers in Simulation, vol. 59, pp. 57-71, 2002. https://doi.org/10.1016/S0378-4754(01)00393-7
  • [41] W. Souffriau, P. Vansteenwegen, G. Berghe, D. Van Oudheusden, “Variable neighbourhood descent for planning crane operations in a train terminal”, in Metaheuristics in the Service Industry, Springer, Berlin, Heidelberg, pp. 83-98, 2009. https://doi.org/10.1007/978-3-642-00939-6_6
  • [42] R. Stahlbock, S. Voß, “Operations research at container terminals: a literature update”, OR Spectrum, vol. 30(1), pp. 1-52, 2008. https://doi.org/10.1007/s00291-007-0100-9
  • [43] A. Świderski, A. Jóźwiak, R. Jachimowski, “Operational quality measures of vehicles applied for the transport services evaluation using artificial neural networks”, Eksploatacja i Niezawodnosc - Maintenance and Reliability, 20(2), 292-299, 2018. https://doi.org/10.17531/ein.2018.2.16
  • [44] M. Taraska, R. Iwańkowicz, “Multi-objective evolutionary method for cargo arrangement in a loading space”, Archives of Transport, vol. 44(4), pp. 65-74, 2017. https://doi.org/10.5604/01.3001.0010.6162
  • [45] H. Veeke, J. Ottjes, “Detailed simulation of the container flows for the IPSI concept”, in Proceedings of the 11th European Simulation Symposium (ESS 1999), pp. 1-4, 1999.
  • [46] L. Wang, X. Zhu, Z. Xie, “Rail Mounted Gantry Crane Scheduling In Rail–Truck Transshipment Terminal”, Intelligent Automation & Soft Computing, vol. 22(1), pp. 61-73, 2016. https://doi.org/10.1080/10798587.2015.1041764
  • [47] M. Wasiak, A. I. Niculescu, M. Kowalski, „A generalized method for assessing emissions from road and air transport on the example of Warsaw Chopin Airport”. Archives of Civil Engineering, 66(2), 399-419, 2020. https://doi.org/10.24425/ace.2020.131817
  • [48] X. Zhang, Q. Zeng, W. Chen, “Optimization model for truck appointment in container terminals”, 13th COTA International Conference of Transportation Professionals (CICTP 2013) Procedia - Social and Behavioral Sciences, Vol. 96, pp.1938-1947, 2013. https://doi.org/10.1016/j.sbspro.2013.08.219
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c142839b-56c1-4355-87f6-8c18a10bd7f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.