Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper analyzes the fracture of the quill shaft. An investigation of a twin-engine trainer aircraft incident has been reported. The incident occurred due to the right electric generator out and low oil pressure. The main failure based on the warnings and the subsequent incident was identified. The failure involved the fatigue fracture of the quill shaft on the J85 turbojet engine's accessory drive gearbox (ADG) and Input Drive Assembly (IDA). It was determined that the fracture had been originated by the torsional loads impacting the quill shaft that connects the ADG and IDA. The quill shaft was broken as the loads excessed the limit values designed by the manufacturer as a system protection part. Although the main failure was successfully identified, further analysis regarding the reaching to the triggering cause of the fracture was performed. Through the detailed fractographic and metallographic studies, the root-cause of the fracture was determined as the misalignment of the quill shaft between ADG as the driving unit and IDA as the driver unit.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
36--46
Opis fizyczny
Bibliogr. 10 poz., rys., tab., wykr.
Twórcy
autor
- Istanbul Gelisim University, Department of Aeronautical Engineering, 34315, Istanbul, Turkey
Bibliografia
- [1] Pizarro, D. F., (2017). Análisis del compresor axial del motor GE-J85-13, Bachelor’s Thesis. Universidad Carlos III de Madrid, pp. 1-80.
- [2] Soares, C., (2015). Gas Turbines: A Handbook of Air, Land and Sea Applications, Butterworth-Heinemann, Oxford, UK.
- [3] Wang, H., Yang, S., Han, L., Fan, H., & Jiang, Q. (2020). Failure Analysis of Crankshaft of Fracturing Pump. Engineering Failure Analysis, 109, 104378. DOI: 10.1016/j.engfailanal.2020.104378.
- [4] Infante, V., Silva, J. M., Silvestre, M. A. R., & Baptista, R. (2012). Failure of a crankshaft of an aeroengine: A contribution for an accident investigation. Engineering Failure Analysis, 35, pp. 286-293. DOI: 10.1016/j.engfailanal.2013.02.002.
- [5] Shimamura, Y., Narita, K., Ishii, H., Tohgo, K., Fujii, T., Yagasaki, T., & Harada, M. (2014). Fatigue properties of carburized alloy steel in very high cycle regime under torsional loading. International Journal of Fatigue, 60, pp. 57-62. DOI: 10.1016/j.ijfatigue.2013.06.016.
- [6] Saraçyakupoğlu, T. (2021). Failure analysis of J85-CAN-15 turbojet engine compressor disc. Engineering Failure Analysis, 119, 104975. DOI: 10.1016/j.engfailanal.2020.104975.
- [7] Rolls-Royce, (2015). The Jet Engine, 5th Edition, Birmingham, UK. ISBN: 978-1-119-06599-9.
- [8] Zeise, B., Liebich, R., & Prölß, M. (2014). Simulation of fretting wear evolution for fatigue endurance limit estimation of assemblies. Wear, 316 (1-2), pp. 49-57. DOI: 10.1016/j.wear.2014.04.013
- [9] Zhang, J., Chen, Y., Xu, B., Pan, M., & Chao, Q. (2019). Effects of splined shaft bending rigidity on cylinder tilt behaviour for high-speed electro-hydrostatic actuator pumps. Chinese Journal of Aeronautics, 32 (2), pp. 499-512. DOI: 10.1016/j.cja.2018.03.007
- [10] Zerbst, U., Madia, M., Klinger, C., Bettge, D., & Murakami, Y. (2019). Defects as a root cause of fatigue failure of metallic components. III: Cavities, dents, corrosion pits, scratches. Engineering Failure Analysis, 97, pp. 759-776. DOI: 10.1016/j.engfailanal.2019.01.034.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0ced55e-e92a-4a6d-8d9b-98c014584838