PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biopolymers as renewable polymeric materials for sustainable development : an overview

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Biopolimery jako odnawialne materiały polimerowe dla zrównoważonego rozwoju : przegląd literatury
Języki publikacji
EN
Abstrakty
EN
Based on the review of 115 literature items, the article presents biopolymers as renewable polymer materials for sustainable development. The types of biopolymers and their applications are discussed, including biopolymers based on starch, cellulose, bacteria, soy and natural polyester. It also describes the issues of biocompatibility, the principles of sustainable chemistry and sustainable development, as well as market trends and future application directions.
PL
Na podstawie przeglądu 115 pozycji literaturowych w artykule przedstawiono biopolimery jako odnawialne materiały polimerowe dla zrównoważonego rozwoju. Omówiono rodzaje biopolimerów i ich zastosowanie, w tym biopolimery na bazie skrobi, celulozy, bakterii, soi i naturalnego poliestru. Opisano również zagadnienia dotyczące biokompatybilności, zasad zrównoważonej chemii i zrównoważonego rozwoju oraz trendy rynkowe i perspektywiczne kierunki zastosowań.
Czasopismo
Rocznik
Strony
185--196
Opis fizyczny
Bibliogr. 115 poz., rys., tab.
Twórcy
  • Department of Chemistry, Lucknow Christian Degree College, Lucknow, U.P, India
  • Department of Chemistry, Magadh University, Bodh Gaya, Bihar, India
  • Department of Chemistry, K.S. Saket P.G. College, Ayodhya, U.P, India
autor
  • Department of Chemistry, K.S. Saket P.G. College, Ayodhya, U.P, India
  • Department of Chemistry, Sri. J.N.P.G.College, Lucknow, U.P, India
autor
  • Department of Chemistry, Biochemistry and Forensic Science, Amity University of Applied Sciences, Amity University Haryana, India
  • Nanotechnology and Catalysis Research Centre, University of Malaya, Kuala Lumpur 50603, Malaysia
Bibliografia
  • [1] Reicher C.L., Bugnicourt E., Coltelli M.B. et al.: Polymers 2020, 12, 1558. https://doi.org/10.3390/polym12071558.
  • [2] Brydson J.A.: “Plastics Materials”, seventh ed., Elsevier, Amsterdam, 1999, p. 1–18.
  • [3] Gervet B.: “The Use of Crude Oil in Plastic Making Contributes to Global Warming”, Lulea University of Technology, Lulea, 2007.
  • [4] Buis A.: “The atmosphere: getting a handle on carbon dioxide”, NASA Glob. Clim. Change (2019 October 9).
  • [5] Akindoyo J.O., Beg M.D., Ghazali S. et al.: RSC Advances 2016, 6(115), 114453.
  • [6] Bashir N.H.: Japanese Journal of Veterinary Research 2013, 61, S-1. https://doi.org/10.14943/jjvr.61.suppl.s1
  • [7] Crawford R.J: “Engineering Plastics”, third ed., Elsevier, Amsterdam, 1998, pp. 1–40.
  • [8] Kuhn P., Siemeril D., Matt D. et al.: Dalton Transactions 2007, 5, 515. https://doi.org/10.1039/B615259G
  • [9] Saleh T.A., Gupta V.K.: “Nanomaterial and Polymer Membranes: Synthesis, Characterization, and Applications”, Elsevier, Amsterdam, 2016.
  • [10] Armand M.: The history of polymer electrolytes, Solid State Ionics 1994, 69(3-4), 309. https://doi.org/10.1016/0167-2738(94)90419-7
  • [11] Tokiwa Y., Calabia B.P., Ugwu C.U., Aiba S.: International Journal of Molecular Sciences 2009, 10(9), 3722. https://doi.org/10.3390/ijms10093722
  • [12] Hasan M., Rahmayani R.: “Bioplastic from Chitosan and Yellow Pumpkin Starch with Castor Oil as Plasticizer”. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Surakarta, Indonesia, 2017, 333, 012087.
  • [13] Pathak S., Sneha C., Mathew B.B.: Journal of Polymer and Biopolymer Physics Chemistry 2014, 2, 84.
  • [14] Zeller M.A., Hunt R., Jones A., Sharma S.: Journal of Applied Polymer Science 2013, 130, 3263. https://doi.org/10.1002/app.39559
  • [15] Khalil H.A., Tehrani M., Davoudpour Y. et al.: Journal of Reinforced Plastics and Composites 2013, 32, 330. https://doi.org/10.1177/0731684412458553
  • [16] Tan S.X., Andriyana A., Ong H.C. et al.: Polymers 2022, 14, 664. https:// doi.org/10.3390/polym14040664
  • [17] Babu R.P., O’connor K., Seeram R.: Progress in Biomaterials 2013, 2(1), 1. https://doi.org/10.1186/2194-0517-2-8
  • [18] Mozaffari N., Kholdebarin A.: Scientific and Technical Journal: Technogenic and Ecological Safety 2019, 5, 47. https://zenodo.org/record/2600664
  • [19] Pat. U.S. 4 187 352 (1980).
  • [20] Bhandari S., Gupta P.: “Chemical Depolymerization of Polyurethane Foam via Ammonolysis and Aminolysis. Recycling of Polyurethane Foams”, William Andrew Publishing, Norwich, 2018, pp. 77–87. https://doi.org/10.1016/B978-0-323-51133-9.00007-3
  • [21] Lu J.Z., Wu Q., Negulescu I.I.: Journal of Applied Polymer Science 2005, 96(1), 93.
  • [22] Mariya D., Usman J., Mathew E.N., Aa P.H.H.: International Journal of Computer Science and Engineering Technology 2020, 8(2), 65.
  • [23] Lambert S., Wagner M.: Chemical Society Reviews 2017, 46(22), 6855. https://doi.org/10.1039/C7CS00149E
  • [24] Iwata T.: Angewandte Chemie International Edition 2015, 54(11), 3210. https://doi.org/10.1002/anie.201410770
  • [25] Thomas N.L., Clarke J., McLauchlin A.R., Patrick S.G.: Waste and Resource Management, 2012, 165(3), 133. https://doi.org/10.1680/warm.11.00014
  • [26] da Luz J.M.R., Paes S.A., Bazzolli D.M.S. et al.: PloS One 2013, 8(8), e69386. https://doi.org/10.1371/journal.pone.0107438
  • [27] Siracusa V., Rocculi P., Romani S., Rosa M. D.: Trends Food Science Technology 2008, 19(12), 634. https://doi.org/10.1016/j.tifs.2008.07.003
  • [28] Otaigbe J., Goel H., Babcock T., Jane J-i: Journal of Elastomers and Plastics 1999, 31(1), 56. https://doi.org/10.1177/009524439903100104
  • [29] Chamas A., Moon H., Zheng J. et al.: ACS Sustainable Chemistry and Engineering 2020, 8(9), 3494. Doi: https://doi.org/10.1021/acssuschemeng.9b06635
  • [30] Roy P.K., Hakkarainen M., Varma I.K., Albertsson A.C.: Environmental Science and Technology 2011, 45(10), 4217. https://doi.org/10.1021/es104042f
  • [31] Meereboer K.W., Misra M., Mohanty A.K.: Green Chemistry 2020, 22, 5519. https://doi.org/10.1039/D0GC01647K
  • [32] Coppola G., Gaudio M.T., Lopresto C.G. et al.: Earth Systems and Environment 2021, 5, 231. https://doi.org/10.1007/s41748-021-00208-7
  • [33] Goldberg D.: Journal of Environmental Polymer Degradation 1995, 3(2), 61.
  • [34] Yaradoddi J.S., Banapurmath N.R., Ganachari S.V. et al.: Scientific Reports 2020, 10, 21960. https://doi.org/10.1038/s41598-020-78912-z
  • [35] Saharan B.S., Sharma A.D.: International Journal of Microbial Resource Technology 2012, 1(1), 11.
  • [36] Barnes D.K., Galgani F., Thompson R.C., Barlaz M.: Philosophical Transactions of the Royal Society B: Biological Sciences 2009, 364(1526), 1985. https://doi.org/10.1098/rstb.2008.0205
  • [37] Gross R.A., Kalra B.: Science 2002, 297, 803. https://doi.org/10.1126/science.297.5582.803
  • [38] Kadouri D., Jurkevitch E., Okon Y., Castro-Sowinski S.: Critical Reviews in Microbiology 2005, 31, 55. https://doi.org/10.1080/10408410590899228
  • [39] Berlanga M., Montero M.T. FernandezBorrell, J., Guerrero, R.: International Microbiology 2006, 9, 95.
  • [40] Borrelle S.B., Ringma J., Law K.L. et al.: Science 2020, 369(6510), 1515. https://doi.org/10.1126/science.aba3656
  • [41] Verma R., Vinoda K.S., Papireddy M., Gowda A.N.S.: Procedia Environmental Sciences 2016, 35, 701. https://doi.org/10.1016/j.proenv.2016.07.069.
  • [42] He A., Li S., Ma J., Yang Z.: International Journal of Polymer Science 2014, Article ID 107028. https://doi.org/10.1155/2014/107028
  • [43] Muneer F., Nadeem H., Arif A., Zaheer W.: Polymer Science, Series C 2021, 63(1), 47.
  • [44] Arikan E.B., Ozsoy H.D.: Journal of Civil Engineering and Architecture 2015, 9(1), 188. https://doi.org/10.17265/1934-7359/2015.02.007
  • [45] Chandra R., Rustgi R.: Progressive Polymer Science 1998, 23, 1273.
  • [46] Piemonte V.: Journal of Polymers and the Environment 2011, 19(4), 988. https://doi.org/10.1007/s10924-011-0343-z
  • [47] Nanda S., Patra B.R., Patel R. et al.: Environmental Chemistry Letters 2021, 29, 1. https://doi.org/10.1007/s10311-021-01334-4
  • [48] Queiroz A.U.B., Collares-Queiroz F.P.: Polymer Reviews 2009, 49(2), 65. https://doi.org/10.1080/15583720902834759
  • [49] Martin O., Schwach E., Averous L., Couturier Y.: Starch 2001, 53(8), 372. https://doi.org/10.1002/1521-379X(200108)53:8<372::AID-STAR372>3.0.CO;2-F
  • [50] Jopski T.: Starch 1993, 83(10), 17.
  • [51] Sagnelli D., Hebelstrup K.H., Leroy E. et al.: Carbohydrate Polymers 2016, 5(152), 398. https://doi.org/10.1016/j.carbpol.2016.07.039.
  • [52] Laycock B.G., Halley P.J.: Starch Polymers 2014, 1, 381. https://doi.org/10.1016/b978-0-444-53730-0.00026-9.
  • [53] Freers S.O.: “Starch-Based Delivery Systems”, Rosen M.R. (Ed), in Delivery System Handbook for Personal Care and Cosmetic Products. Technology, Applications, and Formulations, a volume in Personal Care and Cosmetic Technology, William Andrew Publishing, 2005, pp. 741–760. https://doi.org/10.1016/B978-081551504-3.50040-7
  • [54] Huang M., Yu J., Ma X.: Carbohydrate Polymers 2006, 63, 393. https://doi.org/10.1016/j.carbpol.2005.09.006
  • [55] Mottiar Y., Altosaar I.: Trends Food Science and Technology 2011, 22(6), 335. https://doi.org/10.1016/j.tifs.2011.02.007.
  • [56] Zhang Y. Rempel C., Liu Q.: Critical Reviews in Food Science and Nutrition 2014, 54(10), 1353. https://doi.org/10.1080/10408398.2011.636156
  • [57] Hottle T.A., Bilec M.M., Landis A.E.: Polymer Degradation and Stability 2013, 98(9), 1898. https://doi.org/10.1016/j.polymdegradstab.2013.06.016
  • [58] Wang L., White P.: Cereal Chemistry 1994, 71, 263.
  • [59] Thakur V.K., Thakur M.K.: “Handbook of Sustainable Polymers”, Pan Stanford Publishing, Singapore, 2016, pp. 212-245.
  • [60] Imre, B. Pukánszky B.: European Polymer Journal 2015, 49(6), 1215. https://doi.org/10.1016/j.eurpolymj.2013.01.019
  • [61] Jiménez A., Fabra M.J, Talens P., Chiralt A.: Food and Bioprocess Technology 2012, 5(6), 2058. https://doi.org/10.1007/s11947-012-0835-4
  • [62] Jenkins P.J., Donald A.M.: International Journal of Biological Macromolecules 1995, 17(6), 315. https://doi.org/10.1016/0141-8130(96)81838-1
  • [63] Pérez S., Bertoft E.: Starch/Stärke 2010, 62, 389. https://doi.org/10.1002/star.201000013.
  • [64] Carpenter M.A., Shaw M., Cooper R.D. et al.: BMC Plant Biology 2017, 17, 132. https://doi.org/10.1186/s12870-017-1080-9
  • [65] Pfister B., Sánchez-Ferrer A., Diaz A. et al.: eLife 2016, 5, e15552. https://doi.org/10.7554/eLife.15552
  • [66] Shafqat A., l-Zaqri N., Tahir A., AlsalmeA.: Saudi Journal of Biological Sciences 2021, 28, 1739. https://doi.org/10.1016/j.sjbs.2020.12.015
  • [67] Cellulose-based plastics address need for more sustainable raw materials from food, healthcare, coatings and construction, assed on 1 May 2022. www.plastemart.com/
  • [68] Isroi, Cifriadi A., Panji T. et al.: IOP Conference Series: Earth and Environmental Science 2016, 65, 012011. https://doi.org/10.1088/1755-1315/65/1/012011
  • [69] Avrous L., Fringant C., Moro L.: Starch 2001, 53(8), 368. https://doi.org/10.1002/1521-379X(200108)53:8<368::AID-STAR368>3.0.CO;2-W
  • [70] Brodin M., Vallejos M., Opedal M.T. et al.: Journal of Cleaner Production 2017, 162, 646. https://doi.org/10.1016/J.JCLEPRO.2017.05.209
  • [71] Urtuvia V., Villegas P., González M., Seeger M.: International Journal of Biological Macromolecules 2014, 70, 208. https://doi.org/10.1016/j.ijbiomac.2014.06.001.
  • [72] Narancic T., O’Connor K.E.: Microbiology 2019, 165, 129. https://doi.org/10.1099/mic.0.000749.
  • [73] Możejko-Ciesielska J., Kiewisz R.: Microbiology Research 2016, 192, 271. https://doi.org/10.1016/j.micres.2016.07.010.
  • [74] Alcântara J.M.G., Distante F., Storti G. et al.: Biotechnology Advances 2020, 42, 107582. https://doi.org/10.1016/j.biotechadv.2020.107582.
  • [75] Taguchi S.: Polymer Degradation Stability 2010, 95, 1421. https://doi.org/10.1016/j.polymdegradstab.2010.01.004
  • [76] Nduko J.M., Matsumoto, K., Taguchi S.: “Biological lactate-polymers synthesized by one-pot microbial factory: enzyme and metabolic engineering,” in “Biobased Monomers Polymers Materials”, (eds P. B. Smith and R. A. Gross), American Chemical Society, New York, 2012.
  • [77] Kourmentza C., Plácido J., Venetsaneas N. et al.: Bioengineering 2017, 4, 55. https://doi.org/10.3390/bioengineering4020055
  • [78] Możejko-Ciesielska J., Kiewisz R: Microbiological Research 2016, 192, 271. https://doi.org/10.1016/j.micres.2016.07.010
  • [79] Tarrahi R., Fathi Z., Seydibeyoğlu M.Ö et al.: International Journal of Biological Macromolecules 2020, 146, 596. https://doi.org/10.1016/j.ijbiomac.2019.12.181
  • [80] Nduko J.M., Taguchi S.: Frontiers in Bioengineering and Biotechnology 2021, 04 February. https://doi.org/10.3389/fbioe.2020.618077
  • [81] El-malek F.A., Khairy H., Farag A., Omar S.: International Journal of Biological Macromolecules 2020, 157, 319. https://doi.org/10.1016/j.jbiotec.2021.01.008
  • [82] Smith B.: “Do Plastics Derived from Soy Beans Exhibit Different Properties to Plastics Derived from Traditional Methods? “, December 11, 2018.
  • [83] Swain S.N., Biswal S.M., Nanda P.K. et al.: Journal of Polymers and the Environment 2004, 12, 35. https://doi.org/10.1023/B:JOOE.0000003126.14448.04.
  • [84] Paetau I., Chen Ch-Z., Jane J-l: Industrial and Engineering Chemistry Research 1994, 33(7), 1821. https://doi.org/10.1021/ie00031a023.
  • [85] Jimenez-Rosado M., Bouroudian E., Perez-Puyana V. et al.: Journal of Cleaner Production 2020, 262, 121517. 196 POLIMERY 2022, 67, nr 5
  • [86] Jimenez L., Mena M.J., Prendiz J. et al.: Journal of Food Science and Nutrition 2019, 5(2), 048. https://doi.org/10.24966/FSN-1076/100048
  • [87] Satti S.M., Shah A.A.: Letters in Applied Microbiology 2020, 70, 413. https://doi.org/10.1111/lam.13287
  • [88] Peelman N., Ragaert P., De Meulenaer B. et al.: Trends in Food Science and Technology 2013, 32(2), 128. https://doi.org/10.1016/j.tifs.2013.06.003
  • [89] Bharti S.N., Swetha G.: Journal of Petroleum and Environmental Biotechnology 2016, 7(2), 272. https://doi.org/10.4172/2157-7463.1000272
  • [90] Rahman M.H., Bhoi P.R.: Journal of Cleaner Production 2021, 294, 126218. https://doi.org/10.1016/j.jclepro.2021.126218
  • [91] Cinar S.O., Chong Z.K., Kucuker M.A. et al.: International Journal of Environmental Research and Public Health 2020, 17(11), 3842. https://doi.org/10.3390/ijerph17113842
  • [92] Coppola G., Gaudio M.T., Lopresto C.G. et al.: Earth Systems and Environment 2021, 5, 231. https://doi.org/10.1007/s41748-021-00208-7
  • [93] Bilo F., Pandini S. Sartore L. et al.: Journal of Cleaner Production 2018, 200, 357. https://doi.org/10.1016/j.jclepro.2018.07.252
  • [94] Sharma S., Luzinov I.: Journal of Food Engineering 2013, 119(3), 404. https://doi.org/10.1016/j.jfoodeng.2013.06.007
  • [95] Jain R., Tiwari A.: Asian Journal of Pharmaceutics 2014, 1, 139. https://doi.org/10.4103/0973-8398.134981
  • [96] Awadhiya A., Tyeb S., Rathore K., Verma V.: Engineering in Life Sciences 2017, 17(2), 204. https://doi.org/10.1002/elsc.201500116
  • [97] He M., Wang X., Wang Z. et al.: ACS Sustainable Chemistry and Engineering 2017, 5(10), 9126. https://doi.org/10.1021/ACSSUSCHEMENG.7B02051
  • [98] Saini P., Arora M., Kumar M.R.: Poly (lactic acid) blends in biomedical applications. Advanced Drug Delivery Reviews 2016, 107, 47. https://doi.org/10.1016/j.addr.2016.06.014
  • [99] Maheshwari R., Rani B., Sangeeta P., Sharma A.: Research Journal of Chemical and Environmental Sciences 2013, 1(1), 44.
  • [100] Soroudi A., Jakubowicz I.: European Polymer Journal 2013, 49(10), 2839. https://doi.org/10.1016/j.eurpolymj.2013.07.025
  • [101] Folino A., Karageorgiou A., Calabro P.S., Komilis D.: Sustainability 2020, 12(15), 6030. https://doi.org/10.3390/su12156030
  • [102] Ashter S.A.: “In Plastics Design Library, Introduction to Bioplastics Engineering”, William Andrew Publishing, 2016, pp. 251-274. https://doi.org/10.1016/B978-0-323-39396-6.00010-5
  • [103] Calabro P.S., Grosso M.: Waste Management 2018, 78, 800. https://doi.org/10.1016/j.wasman.2018.06.054
  • [104] Kale G., Kijchavengkul T., Auras R. et al.: Macromolecular Bioscience 2007, 7(3), 255. DOI:10.11002/mabi.200600168
  • [105] Alshehrei F.: Journal of Applied and Environmental Microbiology 2017, 5(1), 8. DOI:10.12691/jaem-5-1-2
  • [106] https://www.theguardian.com/environment/2017/jun/28/a-million-a-minute-worlds-plastic-bottle-binge-as-dangerous-as-climate-change (access date 02.08.2017).
  • [107] https://ourworldindata.org/faq-on-plastics (access date 02.09.2019).
  • [108] Cabezas L., Fernandez V., Mazarro R. et al.: The Journal of Supercritical Fluids 2012, 63, 155. https://doi.org/10.1016/j.supflu.2011.12.002
  • [109] Kasirajan S., Ngouajio M.: Agronomy for Sustainable Development 2012, 32(2), 501. https://doi.org/10.1007/s13593-011-0068-3
  • [110] Atiwesh G., Mikhael A., Parrish C.C. et al.: Heliyon 2021, 7(9), e07918. https://doi.org/10.1016/j.heliyon.2021.e07918
  • [111] Venkatachalam H., Palaniswamy R.: Journal of Advanced Scientific Research 2020, 11(3), 43.
  • [112] Iles A., Martin A.N.: Journal of Cleaner Production 2013, 45, 38. https://doi.org/10.1016/j.jclepro.2012.05.008
  • [113] Thakur S., Chaudhary J., Sharma B. et al.: Current Opinion Green and Sustainable Chemistry 2018, 13, 68. https://doi.org/10.1016/j.cogsc.2018.04.013
  • [114] Maximilian L.: “Bioplastics – Biobased plastics as renewable and/or biodegradable alternatives to petroplastics”, Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, 2015. https://doi.org/10.1002/0471238961.koe00006
  • [115] Di Bartolo A., Infurna G., Dintcheva N.T.: Polymers 2021, 13(8), 1229. https://doi.org/10.3390/polym13081229
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-c0ad9b65-0b11-444b-b6c4-092dbae95c82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.