PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Beneficiation of Artvin-Cerattepe copper-zinc ore by flotation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Cerattepe (Artvin) mine contains volcanogenic massive sulfide (VMS) deposits in northeastern Turkey. This is a kuroko type deposit located in Late Cretaceous volcanic, intrusive and sedimentary rocks, and has a structure with dense alteration stages. In this study, batch flotation tests were carried out to determine the flotation behavior of a new sample (mix ore), that was the combination of two different ores with different flotation behaviors. The mixed ore contains 2.18% Cu, 1.46% Zn, (Cu/Zn ratio 1.49) 38.35% Fe, and 41.6% S content. An efficient separation of copper minerals from zinc minerals using the conventional selective flotation method could not be achieved due to complex mineralogy and very low liberation degree. Therefore, sequential selective flotation resulted in poor Cu recovery. The effects of flotation parameters such as collector type, collector amount, particle size, and pH conditions, were investigated to obtain a bulk copper-zinc concentrate. The best results were obtained using thionocarbamate (Aero 3894) and dithiophosphine (Aerophine 3418A) collector reagents at d80=40 μm particle size. Under optimal conditions (grain size, d80=40 μm, pH=11, amount of collector reagent 60 g/t (Aero 3894), frother (MIBC)=50 g/t, solid ratio=32%, flotation time=8 min.), a bulk copper-zinc concentrate containing 13% Cu and 9.5% Zn was obtained with a copper yield of 84.4% and a zinc yield of 88.9%. The concentrate mass pull was 13%. After rougher and two-stage scavenger flotation, a concentrate (rougher concentrate + scavenger products) was obtained with a mass pull of 22%. Copper and zinc recoveries of this concentrate were 91.8% and 92.5%, respectively.
Słowa kluczowe
Rocznik
Strony
art. no. 167499
Opis fizyczny
Bibliogr. 59 poz., rys., tab., wykr.
Twórcy
  • Dokuz Eylul University, Engineering Faculty, Department of Mining Engineering, Buca, İzmir, Türkiye
autor
  • Eti Bakır Company, R&D Center, Samsun, Türkiye
  • Eti Bakır Company, R&D Center, Samsun, Türkiye
autor
  • Eti Bakır Company, R&D Center, Samsun, Türkiye
  • Eti Bakır Company, Murgul Plant, Murgul, Artvin, Türkiye
Bibliografia
  • ACKERMAN, P.K.; HARRIS, G.H.; KLIMPEL, R.R.; APLAN, F.F., 1987. Evaluation of flotation collectors for copper sulphides and pyrite, I. Common sulfhydryl collectors. Int. J. Miner. Process. 21, 105–140.
  • AGHELI, S., HASSANZADEH, A., HASSAS, B.V., HASANZADEH, M., 2018. Effect of pyrite content of feed and configuration of locked particles on rougher flotation of copper in low and high pyritic ore types. Int. J. Min. Sci. Technol. 28, 167–176.
  • AIKAWA, K., ITO, M., ORII, N., JEON, S., PARK, I., HAGA, K., KAMIYA, T., TAKAHASHI, T., SUNADA, K., SAKAKIBARA, T., ONO, T., MAGWANENG, R.S., HIROYOSHI, N., 2022. Flotation of copper ores with high Cu/Zn ratio: effects of pyrite on Cu/Zn separation and an efficient method to enhance sphalerite depression. Minerals, 12, 1103.
  • AKPINAR, İ., ÇİFTÇİ, E., 2019. Ore mineralogical study of Cerattepe Au-Cu (±Zn) VMS deposit (Artvin-Turkey). In: Glagolev, S. (eds) 14th International Congress for Applied Mineralogy (ICAM2019), Springer Proceedings in Earth and Environmental Sciences, 23–27 September 2019, Belgorod, Russia, p.7-10.
  • ALTINIŞIK, C.Y., CEBECI,•Y., SIS,•H., KALENDER, L., 2022. A Process Mineralogy Approach to the Flotation of Complex Lead–Zinc Ores from Görgü (Malatya) Region. Mining, Metallurgy & Exploration, 39, 1219–1232.
  • BAGCI, E.; EKMEKCI, Z.; BRADSHAW, D.J., 2007. Adsorption behaviour of xanthate and dithiophosphinate from their mixtures on chalcopyrite. Miner. Eng. 2007, 20, 1047–1053.
  • BAHRAMI, A., ABDOLLAHI, M., MIRMOHAMMADI, M., KAZEMI, F., DANESH, A., SHOKRZADEH, M.A., 2020. Process mineralogy approach to study the efficiency of milling of molybdenite circuit processing. Sci. Rep. 10, 21211.
  • BAHRAMI, A., MIRMOHAMMADI, M., GHORBANI, Y., KAZEMI, F., ABDOLLAHI, M., DANESH, A., 2019. Process mineralogy as a key factor afecting the fotation kinetics of copper sulfde minerals. International Journal of Minerals. Metallurgy and Materials 26(4), 430.
  • BARKHORDARI, H.R., JORJANI, E., ESLAMI, A., NOAPARAST, M., 2009. Occurrence mechanism of silicate and aluminosilicate minerals in Sarcheshmeh copper flotation concentrate. Int. J. Miner. Metall. Mater. 16(5), 494.
  • BARTON, P.B., BETHKE, P.M., 1987. Chalcopyrite disease of sphalerite: pathology and epidemiology. Am. Mineral. 72(5-6), 451–467.
  • BAZMANDEH, M., SAM, A., 2021. Improvement of copper sulfide flotation using a new collector in an optimized addition scheme. Physicochem. Probl. Miner. Process., 57(6), 2021, 71-79
  • BENTE, K., DOERING, T., 1995. Experimental studies on the solid state diffusion of Cu + In in ZnS and on “Disease”, DIS (Diffusion Induced Segregations), in sphalerite and their geological applications. Mineral. Petrol. 53, 285–305.
  • BIRINCI, M., GÖK, R., 2021. Characterization and fotation of low-grade boehmitic bauxite ore from Seydisehir (Konya, Turkey). Miner. Eng. 161, 106714.
  • BRADSHAW, C.T., HARRIS, P.J., O’CONNOR, C.T., 1998. Synergistic interactions between reagents in sulphide flotation. Journal of the Southern African Institute of Mining and Metallurgy, 98(4), 189-193.
  • BRADSHAW, D.J. 2014. The role of ‘process mineralogy’ in improving the process performance of complex sulphide ores. In: Proceedings. Juan Yianatos, XXVII International Mineral Processing Congress - IMPC 2014, Santiago Chile, October 2014, v.2, 1–23
  • BULATOVIC, S.M., 2015. Chapter 13- Flotation of copper–zinc ores, Handbook of flotation reagents: chemistry, theory and practice, flotation of sulphide ores. Elsevier 2007, 295-322.
  • BULATOVIC, S.M., WYSLOUZIL, D.M., KANT, C., 1998. Operating practices in the beneficiation of major porphyry copper/molybdenum plants from Chile: innovated technology and opportunities, a review. Miner. Eng. 11(4), 313–331.
  • BULUT, G., SİRKECİ, A.A., ARI, BERİL., 2021. Comparison of anionic, cationic and amphoteric collectors used in pyrite flotation. Physicochem. Probl. Miner. Process. 57(5), 15-22.
  • CAN, ˙İ.B., ÖZÇELİK, S., EKMEKÇİ, Z., 2021. Effects of pyrite texture on flotation performance of copper sulfide ores. Minerals, 11, 1218.
  • CAN, İ.B., EKMEKÇİ, Z., CAN, N.M., 2018. Use of process mineralogy for flotation plant performance analysis. Yerbilimleri/Earth Sciences, 39(3), 177-194 (in Turkish).
  • CASTELLON, C.I., TORO, N., GALVEZ, E., ROBLES, P., LEIVA, W.H., JELDRES, R.I., 2022. Froth flotation of chalcopyrite/pyrite ore: a critical review. Materials, 15, 6536.
  • ÇELIK, I.B., CAN, N.M., SHERAZADISHVILI, J., 2011. Infuence of process mineralogy on improving metallurgical performance of a fotation plant. Miner Process Extr Metall Rev. 32(1), 30–46.
  • CHEN, X., PENG, Y., BRADSHAW, D., 2014. The separation of chalcopyrite and chalcocite from pyrite in cleaner flotation after regrinding. Miner. Eng. 58, 64–72.
  • CHEN, Y.-M., XIE, X., TONG, X., LV, H.-Z., 2018. Mineralogical characterisation of an Ag-In-Bearing polymetallic ore with regard to its mineral separation behavior. Russ. J. Non-Ferrous Metals, 59(1), 16–22.
  • ÇİFTÇİ, E. Volcanogenic massive sulfide (VMS) deposits of Turkey. In Mineral Resources of Turkey, Modern Approaches in Solid Earth Sciences; Pirajno, F., Ünlü, T., Dönmez, C., ¸Sahin, M., Eds.; Springer Nature Switzerland, 2019, Chapter 9; p.427–495.
  • ÇİFTÇİ, E., 2011. Sphalerite associated with pyrrhotite-chalcopyrite ore occurring in the Kotana Fe-skarn deposit (Giresun, NE Turkey): Exsolution or replacement. Turkish J. Earth Sci. 20, 307–320.
  • CRAWFORD, R., RALSTON, J., 1988. The influence of particle size and contact angle in mineral flotation. Int. J. Miner. Process. 23(1–2), 1–24.
  • CYTEC, 2010. Mining Chemicals Handbook. 2010 Edition, Cytec Industries, Inc. USA.
  • DHAR, P., THORNHILL, M., KOTA, H.R., 2019a. Investigation of copper recovery from a new copper deposit (Nussir) in Northern-Norway: thionocarbamates and xanthate-thionocarbamate blend as collectors. Minerals, 9(2), 118.
  • DHAR, P., THORNHILL, M., KOTA, H.R., 2019b. Comparison of single and mixed reagent systems for flotation of copper sulphides from Nussir ore. Miner. Eng. 142, 105930.
  • EJTEMAEI, M., NGUYEN, A.V., 2017. Characterisation of sphalerite and pyrite surfaces activated by copper sulphate. Miner. Eng. 100, 223–232.
  • FUERSTENAU, D.W., HERRERA-URBINA, R., McGLASHAN, D.W., 2000. Studies on the applicability of chelating agents as universal collectors for copper minerals. Int. J. Miner. Process. 2000, 58, 15–33.
  • GOVINDARAO, B., PRUSETH, K.L., MISHRA, B., 2018. Sulfide partial melting and chalcopyrite disease: An experimental study. Am. Mineral. 103, 1200–1207.
  • HAN, G., WEN, S., WANG, H., FENG, Q., 2020. Selective adsorption mechanism of salicylic acid on pyrite surfaces and its application in flotation separation of chalcopyrite from pyrite. Separation and Purification Technology, 240, 116650.
  • HASSANZADEH, A., HASANZADEH, M., 2016. A study on selective flotation in low and high pyritic copper sulphide ores. Separation Science and Technology. 51, 2214-2224.
  • HUANG, X., HUANG, K., JIA, Y., WANG, S., CAO, Z., ZHONG, H., 2019. Investigating the selectivity of a xanthate derivative for the flotation separation of chalcopyrite from pyrite. Chemical Engineering Science, 205, 220–229.
  • HUND, K., LA PORTA, D., FABREGAS, T.P., LAING, T., DREXHAGE, J., 2020. Minerals for climate action: the mineral intensity of the clean energy transition. World Bank Publications Washington, DC, USA. 112p. Available online: https://pubdocs.worldbank.org/en/961711588875536384/Minerals-for-Climate-Action-The-Mineral-Intensity-of-the-Clean-Energy-Transition.pdf (accessed September 16, 2022).
  • KHMELEVA, T.N., SKINNER, W., BEATTIE, D.A., GEORGIEV, T.V., 2002. The effect of sulphite on the xanthate-induced flotation of copper-activated pyrite. Physicochem. Prob. Of Min. Proc. 36(1), 185-195.
  • LOCKINGTON, J.A., COOK, N.J., CIOBANU, C.L., 2014. Trace and minor elements in sphalerite from metamorphosed sulphide deposits. Mineral. Petrol. 108(6), 873–890.
  • LOTTER, N.O., BRADSHAW, D.J. The formulation and use of mixed collectors in sulphide flotation. Miner. Eng. 2010, 23, 945–951.
  • MCFADZEAN, B., CASTELYN, D.G., O’CONNOR, C.T., 2012. The effect of mixed thiol collectors on the flotation of galena. Miner. Eng. 36, 211-218.
  • MIETTINEN, T., RALSTON, J., FORNASIERO, D., 2010. The limits of fine particle flotation. Miner. Eng. 23, 420–437.
  • MOLAEI, N., HOSEINIAN, F.S., REZAI, B., 2018. A study on the effect of active pyrite on flotation of porphyry copper ores. Physicochem. Probl. Miner. Process. 54(3), 922-933.
  • NAYAK, A., ASHRIT, S., JENA, M.S., VENUGOPAL, R., 2020. Mineralogical characterization for selection of possible benefciation route for low-grade lead–zinc ore of Rampura Agucha, India. Trans Indian Inst Met 73, 775–784.
  • NGHIPULILE, T., MOONGO, T.E., DZINOMWA, G., NKWANYANA, S., MAPANI, B., KURASHA, J.T., 2022. Evaluation of the relationship between the milling breakage parameters and mineralogical data: a case study of three copper ores from a multi-mineralised deposit. Minerals, 12, 1263.
  • PARK, I., KANAZAWA, Y., SATO, N., GALTCHANDMANI, P., JHA, M.K., TABELIN, C.B., JEON, S., ITO, M., HIROYOSHI, N., 2021. Beneficiation of low-grade rare earth ore from Khalzan Buregtei deposit (Mongolia) by magnetic separation. Minerals, 11, 1432.
  • PECINA-TREVINO, E.T., URIBE-SALAS, A., NAVA-ALONSO, F., PEREZ-GARIBAY, R., 2003. On the sodium-diisobutyl dithiophosphinate (Aerophine 3418A) interaction with activated and unactivated galena and pyrite. Int. J. Miner. Process. 71, 201–217.
  • SCHIPPER, B.W., LIN, H.-C., MELONI, M.A., WANSLEEBEN, K., HEIJUNGS, R., VAN DER VOET, E., 2018. Estimating global copper demand until 2100 with regression and stock dynamics. Resour. Conserv. Recycl. 132, 28–36.
  • SOUSA, R., FUTURO, A., PIRES, C.S., LEITE, M.M., 2017. Froth flotation of Aljustrel sulphide complex ore. Physicochem. Probl. Miner. Process. 53(2), 2017, 758−769.
  • TIU, G., JANSSON, N., WANHAINEN, C., GHORBANI, Y., LILJA, L., 2021. Ore mineralogy and trace element (re)distribution at the metamorphosed Lappberget Zn-Pb-Ag-(Cu-Au) deposit, Garpenberg, Sweden. Ore Geol. Rev. 135, 104223.
  • TRAHAR, W.J., 1981. A rational interpretation of the role of particle size in flotation. Int. J. Miner. Process. 8(4), 289–327.
  • UCURUM, A., DEMIR, C.S., OTLU, N., ERTURK, M., EKICI, T., KIRK, J., RUIZ, J., MATHUR, R., AREHART, G.B., 2021. Re-Os age and stable isotope (O-H-S-Cu) geochemistry of North Eastern Turkey’s Kuroko-Type volcanogenic massive sulfide deposits: An Example from Cerattepe-Artvin. Minerals, 11, 226.
  • WHITEMAN, E., LOTTER, N.O., and AMOS, S.R., 2016. Process mineralogy as a predictive tool for flowsheet design to advance the Kamoa project. Miner. Eng. 96–97, 185–193.
  • XIE, H., YE, Q., ZHOU, P., GAO, L., TONG, X., LIU, J., 2014. Research on bulk floatation discarding tailing of copper and zinc polymetallic sulfide ores. Advanced Materials Research, 881-883, 1621-1625.
  • YANG, Y.T., ZHANG, J.H., ZHANG, Y., 2013. Mineral processing experiment research of low-grade and fine-size inseparable lead-zinc ore. Advanced Materials Research,734-737, 950-957.
  • YANG, M., XIAO, W., YANG, X., ZHANG, P., 2016. Processing mineralogy study on lead and zinc oxide ore in Sichuan. Metals, 6(4), 93–100.
  • YIANATOS, J., CARRASCO, C., BERGH, L., VINNETT, L., TORRES, C., 2012. Modelling and simulation of rougher flotation circuits. Int. J. Miner. Process. 112–113, 63–70.
  • ZHANG, Q., WEN., S., FENG, Q., ZHANG, S., NIE, W., 2020. Multianalysis characterization of mineralogical properties of copper-lead-zinc mixed ores and implications for comprehensive recovery. Advances in Materials Science and Engineering, 2020, Article ID 2804924, 1-16.
  • ZHAO, J., HU, W., XIAO, F., LIU, X., YU, H., YUAN, H., WANG, H., 2022. Characterization of discarded lead–zinc sulfide ore tailings based on mineral fragments. Minerals, 12, 1279.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bf0a2d80-a632-447d-acc6-e3b64971a51b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.