PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigating the effects of nano-blast furnace slag powder on the behaviour of composite cement materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Attributable to the depletion of raw materials and for sustainability purposes in construction works. Therefore, this study looked into the effects of nano blast furnace slag (BFS) on the microstructure, mechanical properties, and durability of mortar. BFS was substituted for cement at various weight percentages of 0, 1, 1.5, 3, 5, and 7%. Design/methodology/approach: A suspension of water and Nano blast furnace slag was made using ultrasonic mixers to prepare the samples. The suspension was combined with cement and sand using 1 cement, 0.5 water, and 2.75 sand in the mixture to make cement mortar. The mixture was then shaped, left in the mould for 24 hours, and then allowed to cure for 7, 14, 28, 60, and 91 days. SEM was used to investigate the microstructure before and after cement replacement. The mechanical characteristics were evaluated by testing the compressive strength and the surface hardness. While the durability was assessed using the water absorption ratios. Findings: The results revealed that increasing the BFS in the mortar improved mechanical characteristics and durability by up to 3% of BFS. Replacing Nano-blast furnace slag for a portion of the cement is a proposed solution to address the problems of environmental pollution and resource consumption caused by cement production. Research limitations/implications: Another sustainable material needs to be used for additional investigation. We may evaluate more properties and use different weight percentages. Practical implications: Each year, a significant amount of slag is produced as a result of the iron industry, endangering the environment. There have been numerous initiatives to reduce slag’s negative environmental consequences. Using slag to replace some of the cement is one of the options to eliminate this byproduct and reduce excessive cement use. Originality/value: This study investigates the possibility of using a blast furnace blast within the Nanoscale to replace some of the cement used in the construction due to the positive impact on the environment to get rid of industrial byproducts and decrease the use of cement.
Rocznik
Strony
5--10
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Materials Engineering, College of Engineering, Mustansiriyah University, Baghdad, Iraq
autor
  • Department of Materials Engineering, College of Engineering, Mustansiriyah University, Baghdad, Iraq
autor
  • Department of Materials Engineering, College of Engineering, Mustansiriyah University, Baghdad, Iraq
Bibliografia
  • [1] V. Sharma, A. Kumar, A. Kaur, Sustainable deployment of crushed concrete aggregates strengthened with cement and sand, Archives of Materials Science and Engineering 113/1 (2022) 19-34. DOI: https://doi.org/10.5604/01.3001.0015.6970
  • [2] J. Li, W. Zhang, C. Li, P.J.M. Monteiro, Green concreto containing diatomaceous earth and limestone: Workability, mechanical properties, and life-cycle assessment, Journal of Cleaner Production 223 (2019) 662-679. DOI: https://doi.org/10.1016/J.JCLEPRO.2019.03.077
  • [3] I.F. Nasser, M.A. Ali, M. J. Kadhim, Mechanical properties and microstructure of alkali activated mortar containing unexpanded clay, Archives of Materials Science and Engineering 113/2 (2022) 56-68. DOI: https://doi.org/10.5604/01.3001.0015.7018
  • [4] A. Schöler, B. Lothenbach, F. Winnefeld, M. Zajac, Hydration of quaternary Portland cement blends containing blast-furnace slag, siliceous fly ash and limestone powder, Cement and Concrete Composites 55 (2015) 374-382. DOI: https://doi.org/10.1016/J.CEMCONCOMP.2014.10.001
  • [5] N. Sharma, M. Singh Thakur, P.L. Goel, P. Sihag, A review: sustainable compressivestrength properties of concrete mixwith replacement by marble powder, Journal of Achievements in Materials and Manufacturing Engineering 98/1 (2020) 11-23. DOI: https://doi.org/10.5604/01.3001.0014.0813
  • [6] L.P. Singh, D. Ali, U. Sharma, Studies on optimization of silica nanoparticles dosage in cementitious system, Cement and Concrete Composites 70 (2016) 60-68. DOI: https://doi.org/10.1016/J.CEMCONCOMP.2016.03.006
  • [7] A. Bouaziz, R. Hamzaoui, S. Guessasma, R. Lakhal, D. Achoura, N. Leklou, Efficiency of high energy over conventional milling of granulated blast furnace slag powder to improve mechanical performance of slag cement paste, Powder Technology 308 (2017) 37-46. DOI: https://doi.org/10.1016/J.POWTEC.2016.12.014
  • [8] M.M. Sadawy, M.T. Nooman, Influence of nano-blast furnace slag on microstructure, mechanical and corrosion characteristics of concrete, Materials Chemistry and Physics 251 (2020) 123092. DOI: https://doi.org/10.1016/J.MATCHEMPHYS.2020.123092
  • [9] D.J.M. Flower, J.G. Sanjayan, Green house gas emissions due to concrete manufacture, The International Journal of Life Cycle Assessment 12/5 (2007) 282-288. DOI: https://doi.org/10.1065/LCA2007.05.327
  • [10] D.-W. Ryu, W.-J. Kim, W.-H. Yang, J.-H. You, J.-W. Ko, An Experimental Study on the Freezing-Thawing and Chloride Resistance of Concrete Using High Volumes of GGBS, Journal of the Korea Institute of Building Construction 12/3 (2012) 315-322. DOI: https://doi.org/10.5345/JKIBC.2012.12.3.315
  • [11] H. Yazici, The effect of curing conditions on compressive strength of ultra high strength concreto with high volume mineral admixtures, Building and Environment 42/5 (2007) 2083-2089. DOI: https://doi.org/10.1016/J.BUILDENV.2006.03.013
  • [12] Q.L. Li, M.Z. Chen, F. Liu, S.P. Wu, Y. Sang, Effect of superfine blast furnace slag powder on properties of cement-based materials, Materials Research Innovations 19/S1 (2015) S1-168–S1-171. DOI: https://doi.org/10.1179/1432891715Z.0000000001397
  • [13] A. Oner, S. Akyuz, An experimental study on optimum usage of GGBS for the compressive strength of concrete, Cement and Concrete Composites 29/6 (2007) 505-514. DOI: https://doi.org/10.1016/J.CEMCONCOMP.2007.01.001
  • [14] W. Jiang, X. Li, Y. Lv, D. Jiang, Z. Liu, C. He, Mechanical and hydration properties of low clinker cement containing high volume superfine blast furnace slag and nano silica, Construction and Building Materials 238 (2020) 117683. DOI: https://doi.org/10.1016/J.CONBUILDMAT.2019.117683
  • [15] A.A. Atiyah, S.A. Salih, A.S. Kadhim, Properties of self-compacting mortar containing nano blast furnace slag, IOP Conference Series: Materials Science and Engineering 737 (2020) 012054. DOI: https://doi.org/10.1088/1757-899X/737/1/012054
  • [16] S. Srikanth, C.B.R. Krishna, T. Srikanth, K.J.N. Sai Nitesh, V. Swamy Nadh, S. Kumar, S. Thanappan, Effect of Nano Ground Granulated Blast Furnace Slag (GGBS) Volume % on Mechanical Behaviour of High-Performance Sustainable Concrete, Journal of Nanomaterials 2022 (2022) 3742194. DOI: https://doi.org/10.1155/2022/3742194
  • [17] ASTM C109/C109M. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). Available from: https://www.astm.org/c0109_c0109m-08.html (accessed Aug. 09, 2022).
  • [18] ASTM D2240. Shore Hardness. Available from: https://www.intertek.com/polymers/testlopedia/shore-hardness-astm-d2240/ (accessed Aug. 09, 2022)
  • [19] ASTM C642-21. Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. Available from: https://www.astm.org/c0642-21.html (accessed Aug. 09, 2022).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bedde634-2c71-4151-8575-d9b803368ec8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.