PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface water and groundwater quality assessment using the WQI method and human health risk assessment (HHR) in the lower seybouse (Annaba Plain), northeast Algeria

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study was carried out to investigate the current status of surface water and groundwater quality in Lower Seybouse and Annaba Plain, NE Algeria. 36 surface water and groundwater samples were collected in this area, and various physicochemical parameters were analysed. The quality of surface water and groundwater for drinking and the associated health risks were assessed using a Water Quality Index (WQI) and a Human Health Risk Assessment (HHRA) model. The results show that all samples are alkaline with the EC values ranging from 1139 to 5555 μS/cm. The ionic dominance pattern was in the order of Na+ > Mg2+ > Ca2+ > K+ for cations and Cl– > HCO3 – > SO4 2 – > NO3 – for anions, respectively. The dominant water types are SO4-Cl-Ca-Mg and SO4-Cl-Na, formed by dissolution of evaporative and carbonate-rich material. All samples are unsuitable for drinking, with 1 sample classified as poor (rank = 4) and 35 samples as extremely poor (rank = 5). These samples are mainly located near the Seybouse Wadi, which is a natural outlet for wastewater from human activities. The assessment of non-carcinogenic risk showed that the Hazard Index (HI) for males ranged from 0.12 to 1.01 with a mean of 0.30 and only one sample exceeded value 1. For females, the HI was between 0.16 and 1.28 for females, with a mean of 0.39. The risk for children was even higher, ranging from 0.41 to 3.28, with a mean of 1.03, suggesting that children are more vulnerable to water contamination. The Carcinogenic Risk (CR) values for Pb ranged from 10–3 to 8.6 · 10–3, with a mean of 2.6 · 10–3 for males, and between 1.4 · 10–3 to 10–2, with a mean of 3.3 · 10–3 for females, while for children the CR values ranged from 3.5 · 10–3 to 2.7 · 10–3, with a mean of 8.4 · 10–3, indicating that no possible CR from water drinking
Rocznik
Tom
Strony
7--25
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
autor
  • Hydrocarbon and Earth Sciences Faculty Ouargla University, 30000 Ouargla, Algeria
  • Energy and Materials Laboratory Faculty of Sciences and Technology Tamanrasset University, Algeria City of Teachers 70 lgt, Tamanrasset, Algeria
  • Hydrocarbon and Earth Sciences Faculty Ouargla University, 30000 Ouargla, Algeria
Bibliografia
  • Adimalla N., Qian H. 2019b. Groundwater quality evaluation using water quality index (WQI) for drinking purposes and human health risk (HHR) assessment in an agricultural region of Nanganur, South India. Ecotoxicol Environ Saf., 176, 153–161.
  • Adimalla N., Qian H. 2019a. Hydrogeochemistry and fluoride contamination in the hard rock terrain of central Telangana, India: analyses of its spatial distribution and health risk. SN Appl. Sci., 1(3), 202.
  • Adimalla N., Wu J. 2019. Groundwater quality and associated health risks in a semi-arid region of South India: implication to sustainable groundwater management. Hum. Ecol. Risk Assess., 25(1–2), 191–216.
  • Adimalla N., Li P. 2018. Occurrence, health risks, and geochemical mechanisms of fluoride and nitrate in groundwater of the rock-dominant semi-arid region, Telangana State, India. Hum. Ecol. Risk Assess. Int. J. https://doi.org/10.1080/ 10807039.2018.1480353.
  • Adimalla N., Li P., Venkatayogi S. 2018c. Hydrogeochemical evaluation of groundwater quality for drinking and irrigation purposes and integrated interpretation with water quality index studies. Environ. Process., 5(2), 363–383. https://doi.org/10. 1007/s40710-018-0297-4.
  • Aissa Djamel Eddine et al. 1998. Géologie et métallogénie sommaire du massif de l’Edough Bulletin_SGN_V21-2. Mem. Serv. Geol., Algerie, 9, 7–55.
  • Bao Q., Hu W., Qi Y., Tang W., Wang P., Wan J., Chao X.J., Yang 2017. Nitrate reduction in water by aluminium alloys particles J. Environ. Manag., 196, 666–673.
  • Bodrud-Doza M., Bhuiyan M.A.H., Islam S.D.U., Quraishi S.B., Muhib M.I., Rakib M.A., Rahman M.S. 2019. Delineation of trace metals contamination in groundwater using geostatistical techniques: A study on Dhaka City of Bangladesh. Groundwaterfor Sustainable Development, 9, 100212.
  • Boucenna F., Djorfi S., Fenazi B. 2018. Geochemical and isotopic study of groundwater of anthropogenic coastal aquifer: Meboudja and Low seybouse Plain, Annaba (Ne Algeria). Journal of Biodiversity and Environmental Sciences, JBES, 12, 3, 226–235.
  • Caby R., Hammor D. 1992. Le massif cristallin de l’Edough (Algérie): un ‘Metamorphic Corecomplex’ d’âge miocène dans les Maghrébides. Comptes rendus de l’Académie des sciences. Série 2. Mécanique, physique, chimie, sciences de l’univers, sciences de la terre, 314 (08), 829–835.
  • Cao S., Duan X., Zhao X., Ma J., Dong T., Huang N., Sun C., He B., Wei F. 2014. Health Risks from the Exposure of Children to As, Se, Pb and Other Heavy Metals near the Largest Coking Plant in China. Science of the Total Environment, 472, 1001–1009.
  • Chen J., Huang Q., Lin Y., Fang Y., Qian H., Liu R., Ma H. 2019. Hydrogeochemical characteristics and quality assessment of groundwater in an irrigated region, Northwest China. Water, 11(1), 18.
  • Davies J.M. 2006. Application and Tests of the Canadian Water Quality Index for Assessing Changes in Water Quality in Lakes and Rivers of Central North America. Lake and Reservoir Management, 22, 4, 308–320. https://doi.org/10.1080/07438140609354365.
  • Debernardi L., De Luca D.A., Lasagna M. 2008. Correlation between nitrate concentration in groundwater and parameters affecting aquifer intrinsic vulnerability. Environmental Geology, 55, 539–558.
  • Debièche T.H., Mania J., Mudry J. 2003. Species and mobility of phosphorus and nitrogen in a wadi relationship. J. Afric. Earth Sci., 37/1-2/47-57.
  • Djabri L., Hani A., Laouar R., Mania J., Mudry J., Louhi A. 2003. Potential pollution of groundwater in the valley of the Seybouse River, north-eastern Algeria. Environmental Geology, 44, 738–744.
  • Djidel M. 2004. Etude hydrochimique des nappes côtières cas des nappes du littoral d’Annaba-El Kala (Nord-Est Algérien) mémoire de magistère. Univ. Annaba, 37.
  • Djorfi S. et al. 2008. Impacts des rejets industriels sur la qualité des eaux de l’aquifère d’Annaba (Algérie). Bull. Ser. Géol. Nat., 49.
  • Environmental Protection Agency (U.S.). 2017. Final Determination on the Appropriateness of the Model Year 2022–2025 Light-Duty Vehicle Greenhouse Gas Emissions Standards under the Midterm Evaluation. EPA-420-R-17-001. U.S. Environmental Protection Agency: Washington, DC, USA, January 2017.
  • Fan A.M. 2011. Nitrate and Nitrite in Drinking Water: A Toxicological Review California Environmental Protection Agency, Oakland.
  • He S., Li P. 2019. A MATLAB based graphical user interface (GUI) for quickly producing widely used hydrogeochemical diagrams. Geochemistry. https://doi.org/10.1016/j.chemer.2019.125550.
  • He S., Wu J. 2019. Hydrogeochemical characteristics, groundwater quality, and health risks from hexavalent chromium and nitrate in groundwater of Huanhe formation in Wuqi County, Northwest China. Expo Health, 11(2), 125–137. https://doi.org/10.1007/s1240 3-018-0289-7.
  • Khan R., Jhariya D.C. 2017. Groundwater quality assessment for drinking purpose in Raipur city. Chhattisgarh using water quality index and geographic information system. J. Geol. Soc. India, 90, 69–76. https://doi.org/10.1007/s12594-017-0665-0.
  • Khanoranga K.S. 2019. An assessment of groundwater quality for irrigation and drinking purposes around brick kilns in three districts of Balochistan province, Pakistan, through water quality index and multivariate statistical approaches. J. Geochem. Explor., 197, 14–26.
  • Li P., Qian H., Wu J. 2010. Groundwater quality assessment based on improved water quality index in Pengyang County, Ningxia, and Northwest China. E-J Chem., 7(S1), S209–S216. https://doi.org/10.1155/2010/45130 4.
  • Li P., Zhang Y., Yang N. et al. 2016c. Major ion chemistry and quality assessment of groundwater in and around a mountainous tourist town of China. Expo Health, 8(2), 239–252. https://doi.org/10.1007/s12403-016-0198-6.
  • Li P., Qian H., Wu J. 2018c. Conjunctive use of groundwater and surface water to reduce soil salinization in the Yinchuan plain, North-West China. Int. J. Water Resour. Dev., 34(3), 337–353.
  • Li P., He X., Li Y., Xiang G. 2019a. Occurrence and health implication of fluoride in groundwater of loess aquifer in the Chinese Loess Plateau: a case study of Tongchuan, Northwest China. Expos Health, 11(2), 95–107. https://doi.org/10.1007/s12403-018-0278-x.
  • Messadi D.V., Le A., Berg S., Jewett A., Wen Z., Kelly P., Bertolami C.N. 1999. Expression of apoptosis‐associated genes by human dermal scar fibroblasts. Wound Repair and Regeneration, 7(6), 511–517.
  • Mohammadi A.A., Zarei A., Majidi S., Ghaderpoury A., Hashempour Y., Saghi M.H., Alinejad A., Yousefi M., Hosseingholizadeh N., Ghaderpoori M. 2019. Carcinogenic and NonCarcinogenic Health Risk Assessment of Heavy Metals in Drinking Water of Khorramabad, Iran. Methods, 6, 1642–1651. https://doi.org/10.1016/j.mex.2019.07.017.
  • Piper A.M. 1944. A graphic procedure in the geochemical interpretation of water-analysis. Trans. Am. Geophys. Union, 25(6), 914–928. https://doi.org/10.1029/TR25i 006p00914.
  • Qiu J. 2010. China faces up to groundwater crisis. Nature, 466(7304), 308.
  • Rahman M.M., Bodrud-Doza M., Siddiqua M.T., Zahid A., Islam A.R.M.T. 2020. Spatiotemporal distribution of fluoride in drinking water and associated probabilistic human health risk appraisal in the coastal region, Bangladesh. Science of the Total Environment, 724, 138316.
  • RAIS. 2017. Risk Assessment Information System in the Risk Exposure Models for Chemicals User’s Guide. https://rais.ornl.gov/tools/rais_chemical_risk_guide.
  • Rezaei H., Jafari A., Kamarehie B., Fakhri Y., Ghaderpoury A., Karami M.A., Ghaderpoori M., Shams M., Bidarpoor F., Salimi M. 2019. Health-risk assessment related to the fluoride, nitrate, and nitrite in the drinking water in the Sanandaj, Kurdistan County, Iran. Hum. Ecol. Risk Assess., 25(5), 1242–1250.
  • Sanou A., Méité N., Kouyaté A., Irankunda E., Kouamé A.N., Koffi A.E., … Kouakou L.P.M.S. 2022. Assessing levels and health risks of fluoride and heavy metal contamination in drinking water. Journal of Geoscience and Environment Protection, 10(11), 15–34.
  • Tepanosyan G., Maghakyan N., Sahakyan L., Saghatelyan A. 2017. Heavy metals pollution levels and children health risk assessment of Yerevan kindergartens soils. Ecotoxicology and Environmental Safety, 142, 257–265.
  • Touré A., Wenbiao D., Keita Z., Dembele A., Abdalla Elzaki E.E. 2019. Drinking Water Quality and Risk for Human Health in Pelengana Commune, Segou, Mali. Journal of Water and Health, 17, 609–621. https://doi.org/10.2166/wh.2019.004.
  • USEPA 1989. Risk Assessment Guidance for Superfund, vol. 1: Human Health Evaluation Manual (Part A), United States Environmental Protection Agency, Washington, DC, USA.
  • USEPA 2010. Human Health Risk Assessment: Risk-Based Concentration Table. http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/Generic_Tables.
  • Verma D.K., Bhunia G.S., Shit P.K. et al. 2018. Assessment of groundwater quality of the central Gangetic Plain area of India using geospatial and WQI Techniques. J. Geol. Soc. India, 92, 743–752. https://doi.org/10.1007/s12594-018-1097-1.
  • WHO 2017. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum. World Health Organization, Geneva, Switzerland.
  • Wu J., Sun Z. 2016. Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, mid-west China. Expo Health, 8(3), 311–329. https://doi.org/10.1007/s1240 3-015-0170-x.
  • Wu J., Wang L., Wang S., Tian R., Xue C., Feng W., Li Y. 2017. Spatiotemporal variation of groundwater quality in an arid area experiencing long-term paper wastewater irrigation,northwest China. Environ. Earth Sci., 76(13), 460. https://doi.org/10.1007/s12665-017-6787-2.
  • Xu P., Feng W., Qian H., Zhang Q. 2019a. Hydrogeochemical characterization and irrigation quality assessment of shallow groundwater in the Central Western Guanzhong Basin, China. Int. J. Environ. Res. Public Health, 16(9), 18.
  • Yu C., Gong P., Yin Y. 2011. China’s water crisis needs more than words. Nature, 470(7334), 307–307.
  • Zakir H.M., Sharmin S., Akter A., Rahman M.S. 2020. Assessment of Health Risk of Heavy Metals and Water Quality Indices for Irrigation and Drinking Suitability of Waters: A Case Study of Jamalpur Sadar Area, Bangladesh. Environmental Advances, 2, 100005. https://doi.org/10.1016/j.envadv.2020.100005.
  • Zhang Q., Xu P., Qian H. 2020. Groundwater quality assessment using improved water quality index (WQI) and human health risk (HHR) evaluation in a semi-arid region of northwest China. Exposure and Health, 12, 487–500.
  • Zotou I., Tsihrintzis V.A., Gikas G.D. 2019. Performance of seven water quality indices (WQIs) in a Mediterranean River. Environ. Monit. Assess., 191(8), 505.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-be07bfab-c4fe-456a-a928-f6e5e0731cd4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.