PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Overview of the use of Light Detection and Ranging and Ground Penetrating Radar implemented on an unmanned aerial vehicle

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Przegląd wykorzystania skaningu laserowego oraz georadaru stosowanych na bezzałogowych statkach powietrznych
Języki publikacji
EN
Abstrakty
EN
Currently, there is a rapid increase in interest in unmanned aerial vehicles (UAVs). These devices can be used as platform for carrying various sensors, often enabling access to hard-to-reach areas using traditional, ground-based methods. Very popular sensors used in non-invasive search work include Light Detection and Ranging (LiDAR) and Ground Penetrating Radar (GPR). The combination of the above sensors with UAVs is becoming increasingly common, which provides many benefits in many areas, such as archaeology, forensics, agriculture, rescue, terrain mapping, or landmine detection. This article is a synthetic review of the principle of operation and the use of technologies such as LiDAR and GPR, as well as their use on unmanned flying platforms. Issues related to the use of these sensors on various UAV configurations and the resulting conditions of work are discussed. The differences between LiDAR and GPR are also discussed, as well as the possible analysis of the examined area using both technologies to obtain the best effect. The implementation of these non-invasive search methods is not a threat to traditional searches in the form of excavations, but only a method preceding invasive research. Thanks to such an innovative approach, the effectiveness of such work is increased by narrowing the excavations area.
PL
Obecnie obserwuje się szybki wzrost zainteresowania bezzałogowymi statkami powietrznymi (UAV). Urządzenia te mogą być wykorzystywane jako platformy do przenoszenia różnych czujników, często umożliwiając dostęp do trudno dostępnych obszarów dla tradycyjnych metod naziemnych. Do bardzo popularne czujników, stosowanych w nieinwazyjnych pracach poszukiwawczych zalicza sięskaning laserowy(LiDAR)oraz georadar (GPR). Połączenie powyższych czujników z platformami UAV staje się coraz powszechniejsze, co zapewnia wiele korzyści wwielu dziedzinach, takich jakarcheologia, kryminalistyka,rolnictwo, ratownictwo, mapowanie terenu czy wykrywanie min lądowych. Niniejszy artykuł stanowi syntetyczny przegląd zasady działania i wykorzystania technologii takich jak LiDAR i GPR, a także ich zastosowania na bezzałogowych platformach latających.Omówiono zagadnienia związane z wykorzystaniem tych czujników na różnych konfiguracjach UAV i wynikającymi z tego warunkami pracy. Omówiono również różnice między LiDAR i GPR, a także ewentualną analizę badanego obszaru przy użyciu obu technologii w celuuzyskanianajlepszegoefektu.Wdrożenie tych nieinwazyjnych metod poszukiwawczych nie stanowizagrożeniadla tradycyjnych poszukiwańw formie wykopalisk,a jedynie metodę poprzedzającą te badania. Dzięki tak nowatorskiemu podejściu zwiększa się efektywność prac poszukiwawczych poprzez zawężenie obszaru wykopalisk.
Rocznik
Strony
27--37
Opis fizyczny
Bibliogr. 44 poz., rys., wykr.
Twórcy
  • Poznan University of Technology, Faculty of Civil and Transport Engineering, Piotrowo 3, 60-965 Poznań
  • Poznan University of Technology, Faculty of Civil and Transport Engineering, Piotrowo 3, 60-965 Poznań
  • Association of rail transport experts and managers, Trębacka 4, 00-074 Warszawa, Poland,
Bibliografia
  • [1] Ekielski A., Wesołowski K. (2019). Agrotronic systems (in polish). Polish Chamber of Commerce of Agricultural Machines and Equipment, ISBN 978-83-955096-0-5.
  • [2] Directive 2009/128/EC of The European Parliament and of The Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides (Text with EEA relevance). https://eur-lex.europa.eu/eli/dir/2009/128/oj (access date: 03/10/2024).
  • [3] https://www.globenewswire.com/en/news-release. Unmanned Aerial Vehicle (UAV) MarketShare Worth US$ 73.91 Bn, Globally, by 2028 at 21.6% CAGR - Exclusive Report by The Insight Partners (access date: 02/10/2024).
  • [4] Debnath S., et al. (2023). Applications of LiDAR in Agriculture and Future Research Directions. Journal of Imaging. 9(3), 57. https://doi.org/10.3390/jimaging9030057.
  • [5] Rivera G., et al. (2023). LiDAR applications In precision agriculture for cultivating crops: A review of recent advances. Computers and Electronics in Agriculture, Volume 207, 2023, 107737. https://doi.org/10.1016/j.compag.2023.107737.
  • [6] Ding Y., Ye F. (2024). A search and rescue robot design based on LiDAR technology. Applied and Computational Engineering, 30(1):238-254. doi:10.54254/2755-2721/30/20230108.
  • [7] Jozkow G., Toth C., Grejner-Brzezinska D. (2016). UAS Topographic mapping with velodyne LiDAR sensor. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume III-1, 2016, XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic. doi:10.5194/isprsannals-III-1-201-2016.
  • [8] Giannoccaro N. I., Nishida T. (2020). Analysis of the Surrounding environment Using an Innovative Algorithm Based on Lidar Data on a Modular Mobile Robot. Jpurnal of Automation, Mobile Robotics and Intelligent Systems, 14(4), 25-34. https://doi.org/10.14313/JAMRIS/4-2020/41.
  • [9] Clasen C. C., Kruse F. A., Kim A. M. (2012). Analysis of LiDAR Data for Emergency Management and Disaster Response. Conference: Optical Remote Sensing of the Environment. doi:10.1364/ORSE.2012.RTu2E.2.
  • [10] Wang P. (2021). Comparison Review on LiDAR vs Camera in Autonomous Vehicle. Journal of Physics: Conference Series 2093 012032. doi:10.1088/1742-6596/2093/1/012032.
  • [11] Kumar G. A., et al. (2020). LiDAR and Camera Fusion Approach for Object Distance Estimation in Self-Driving Vehicles. Symmetry, 12, 324. doi:10.3390/sym12020324.
  • [12] Lidar Technology in Traffic Law. https://mcaleerlaw.net/lidar-technology-in-traffic-law/ (access date: 03/10/2024).
  • [13] Guan H., et al. (2021). UAV-lidar aids automatic intelligent powerline inspection. Electrical Power and Energy Systems, 130 (2021) 106987. https://doi.org/10.1016/j.ijepes.2021.106987.
  • [14] Li P., et al. (2022). Online Monitoring of Overhead Power Lines Against Tree Intrusion via a Low-cost Camera and Mobile Edge Computing Approach. Journal of Physics: Conf. Series 2422 (2023) 012018. doi:10.1088/1742-6596/2422/1/012018.
  • [15] Vinci G., et al. (2024). LiDAR Applications In Archaeology: A Systematic Review. Archaeological Prospection, Special issue: Under-canopy Airborne LiDAR for Archaeological Prospections in the Wooded Mediterranean Environment: Challenges, Best Practices and Future Prospects. https://doi.org/10.1002/arp.1931.
  • [16] Górecki A. (2017). Metody wykorzystywane przez polskich kryminalistów I archeologów przy eksploaracji mogił – różnice I zbieżności. Acta Universitatis Lodziensis. Folia Archaeologica, 32. http://dx.doi.org/10.18778/0208-6034.32.03.
  • [17] Behrendt A., et al. (2006). The benefits of lidar for meteorological research: The Convective and Orographically-Induced Precipitation Study (COPS). https://www.researchgate.net/publication/228638107_The_benefits_of_lidar_for_meteorological_research_The_Convective_and_Orographically-Induced_Precipitation_Study_COPS (access date: 03/10/2024).
  • [18] Vorobyeva O., Nechaj P., Gaál L. (2019). Lidar-Based Detection of Dangerous Meteorological Phenomena at the Bratislava Airport. Transportation Research Procedia, 43(2019), 199–208. https://doi.org/10.1016/j.trpro.2019.12.034.
  • [19] Cosgrove C. F., Coops N. C., Martin T. G. (2024) Using the full potential of Airborne Laser Scanning (aerial LiDAR) in wildlife research. Wildlife Society Bulletin, 48:e1532. https://doi.org/10.1002/wsb.1532.
  • [20] Merrick M. J., Koprowski J. L., Wilcox C. (2013). Into the Third Dimension: Benefits of Incorporating LiDAR Data in Wildlife Habitat Models. USDA Forest Service Proceedings RMRS-P-67. 389-395.
  • [21] Wang X., et al. (2008). The evolution of LiDAR and its application in high precision measurement. IOP Conf. Series: Earth and Environmental Science 502 (2020) 012008. doi:10.1088/1755-1315/502/1/012008.
  • [22] Webster S., et al. (2019). Simulation of LIDAR Systems for Aerial Intelligence, Surveillance, and Reconnaissance. NATO Science & Technology Organization (STO) – Meeting Proceedings Paper, STO-MP-MSG-149. doi: 10.14339/STO-MP-MSG-149-17-pdf.
  • [23] Łukasiewicz J. (2022).Unmanned aerial vehicles as a source of threats to the state’s electricity supply infrastructure and the proposed methods of protecting this infrastructure. Terroryzm - studia, analizy, prewencja. 2022, 1 (1), 320–349. https://doi.org/10.4467/27204383TER.22.012.15428.
  • [24] Freestone P. (2021). LIDAR and Laser – how vulnerable is the RAN to the emergence of light spectrum weapons and sensors? Royal Australian Navy – Tac Talks. Issue: 52.
  • [25] Ostrowski R., Cywiński A., Strzelec M. (2021). Electronic warfare in the optical band: Main features, examples and selected measurement data. Defence Technology, 17(5), 1636-1649. https://doi.org/10.1016/j.dt.2020.09.007.
  • [26] Kasban H., et al. (2010). A Comparative Study of Landmine Detection Techniques. Sensing and Imaging. 11, 89–112. doi: 10.1007/s11220-010-0054-x.
  • [27] Riemersma G., James K., Pacheco P. (2023). How UAV Lidar improves landmine clearance planning. A project in Angola. www.gim-international.com/content/article/how-uav-lidar-improves-landmine-clearance-planning access date: 09/10/2024).
  • [28] Ristić A., et al. (2020). Using Ground Penetrating Radar to Reveal Hidden Archaeology: The Case Study of the Württemberg-Stambol Gate In Belgrade (Serbia). Sensors, 20(3), 607. https://doi.org/10.3390/s20030607.
  • [29] Doolittle J., W. F. Miller. (1991). Use of ground-penetrating radar techniques in archaeological investigations. NASA. Stennis Space Center, Applications of Space-Age Technology In Anthropology
  • [30] https://botland.com.pl/blog/czujniki-lidar/(access date: 30/07/2024).
  • [31] https://edu4industry.com/systemy-lidarowe/ (access date: 30/07/2024).
  • [32] https://botland.store/time-of-flight-sensor/12036-laser-distance-sensor-lidar-lite-v3hp-i2cpwm-40m-sparkfun-sen-14599-753759180164.html (access date: 30/07/2024).
  • [33] https://medium.com/@matt-sharon/lidar-point-cloud-data-guide-62c126101c08 (access date: 01/08/2024).
  • [34] www.neonscience.org/resources/learning-hub/tutorials/lidar-basics (access date: 01/08/2024).
  • [35] www.bluemarblegeo.com/blog/calculating-tree-inventory-from-aerial-lidar/ (access date: 31/07/2024).
  • [36] Marques P., et al. (2024). Advancements in Remote Sensing Imagery Applications for Precision Management in Olive Growing: A Systematic Review. Remote Sensing, 16(8), 1324. https://doi.org/10.3390/rs16081324.
  • [37] https://www.agrotechnomarket.com/2019/01/lidar-usage-for-agriculture.html (access date: 31/07/2024).
  • [38] https://www.geoportal.gov.pl/pl/dane/dane-pomiarowe-lidar-lidar/ (access date: 10/10/2024). Skolnik M. (2008). Radar Handbook - Third Edition. McGraw-Hill Education - Europe, ISBN 10: 0071485473 / ISBN 13: 9780071485470.
  • [39] Noviello C., et al. (2022). An Overview on Down-Looking UAV-Based GPR Systems.
  • [40] Liang X., et al. (2022). Application of GPR Underground Pipeline Detection Technology In Urban Complex Geological Environments. Geofluids, Vol. 2022, Article ID 7465919. https://doi.org/10.1155/2022/7465919.
  • [41] www.sensoft.ca/gpr-for-underground-utility-pipe-line-locating/ (access date: 09/10/2024).
  • [42] Vergnano A., Franco D., Godio A. (2022). Drone-Borne Ground-Penetrating Radar for Snow Cover Mapping. Remote Sensing, 14, 1763., https://doi.org/10.3390/rs14071763.
  • [43] Zink R., et al. (2023). Assessing the potential disturbance effects on the use of Unmanned Aircraft Systems (UASs) for European vultures research: a review and conservation recommend- dations. Bird Conservation International. 33, e45, 1–12. https://doi.org/10.1017/S095927092300010.
  • [44] Soilán M., et al. (2019). Review of Laser Scanning Technologies and Their Applications for Road and Railway Infrastructure Monitoring. Infrastructures. 4, 58. doi:10.3390/infrastructures4040058.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-bbd323a4-a3a8-4f57-94f5-25870415eaf9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.