PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of biological method for removing selected heavy metals from sewage sludge

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to evaluate the application of bioleaching technique to reduce content of selected heavy metals (Zn, Cu) in sewage sludge, and hence to indicate possibilities for metals recovery from this type of waste. Bioleaching experiments were carried out with mixed bacteria Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans, using leaching media: ferrous sulfate with different concentrations of Fe2+ (2 g/dm3 and 9 g/dm3) and sulfuric acid (VI). Dynamics of the increase in zinc concentration in biological systems was almost identical for both 9 g Fe2+/dm3 and 2 g Fe2+/dm3 in samples. However, higher values of Cu concentration were achieved using a medium with iron(II) salt 9 g/dm3 than in a 2 g/dm3 solution. Bioleaching with 9 g Fe2+/dm3 allowed for a nearly 20-fold reduction of zinc content and a 2-fold reduction in copper content in sewage sludge. Using 9 g/dm3 ferrous sulfate bioleaching could dissolve 94.8% Zn and 58.9%, whereas chemical leaching dissolved 47.3% Zn and 4.2% Cu.
Słowa kluczowe
Rocznik
Strony
387--395
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • Silesian University of Technology, Department of Metallurgy and Recycling, ul. Krasińskiego 8, Katowice, Poland
  • Silesian University of Technology, Department of Metallurgy and Recycling, ul. Krasińskiego 8, Katowice, Poland
Bibliografia
  • ABEL, S., DEL MUNDO DACERA, D., 2006. Heavy metal removal from contaminated sludge for land application: a review. Waste Manag. 26, 988–1004.
  • BAYAT, B, SARI, B., 2010. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge. J Hazard Mater 174, 763–769.
  • BŁASZCZYK, K., KRZYŚKO-ŁUPICKA, T., 2014. Przegląd metod badania osadów ściekowych stosowanych w Polsce, Inżynieria i Ochrona Środowiska 17, 117-133.
  • CHAN, L.C., GU, X.Y., WONG, J.W.C., 2003. Comparison of bioleaching of heavy metals from sewage sludge using iron-and sulfur-oxidizing bacteria. Adv Environ Res 7, 603–607.
  • CHEN, Y.-X., HUA, Y.-M., ZHANG, S.-H., TIAN, G.-M., 2005. Transformation of heavy metal forms during sewage sludge bioleaching, J. Hazard. Mat. B123, 196-202.
  • COUILLARD, D., CHARTIER, M., MERCIER, G., 1994. Major factors influencing bacterial leaching of heavy metals (Cu and Zn) from anaerobic sludge. Environ. Pollut. 85, 175-184.
  • FUENTES, A., LLORÉNS, M., SÁEZ, J., AGUILAR, M.I., ORTUÑO, J.F., MESEGUER, V.F., 2004. Phytotoxicity and heavy metals speciation of stabilised sewage sludges. J Hazard. Mater. 108, 161–169.
  • GHAVIDEL, A., RAD, S.N., ALIKHANI, H.A., ·SHARARI, M., GHANBARI, A., 2017. Bioleaching of heavy metals from sewage sludge, direct action of Acidithiobacillus ferrooxidans or only the impact of pH? J Mater. Cycles Waste Manag. 20, 1179–1187.
  • JENSEN, A.B., WEBB, C., 1995, Ferrous sulphate oxidation using Thiobacillus ferrooxidans: a review. Process. Biochem.,30, 225–236.
  • KARWOWSKA, B., WIŚNIOWSKA, E., SPERCZYŃSKA, E., JANOSZ-RAJCZYK, M., 2014. Ekstrakcja metali z osadów przemysłowych i komunalnych przy użyciu roztworów EDTA. Inżynieria i Ochrona Środowiska 17, 423-432.
  • LEE, I.H., KUAN, Y-Ch., CHERN, J-M., 2006. Factorial experimental design for recovering heavy metals from sludge with ion - exchange resin. J. Hazard. Mat. B138, 549-559.
  • MARCHIORETTO, M.M., BRUNING, H., LOAN, N.T.P., RULKENS, W.H., 2002. Heavy metals extraction from naerobically digested sludge. Water Sci. Technol. 46, 1–8.
  • MRAŽÍKOVÁ, A., MARCINČÁKOVÁ, R., KADUKOVÁ, J., VELGOSOVÁ, O., 2013. Influence of Bacterial Culture to Copper Bioleaching from Printed Circuit Boards. Journal of the Polish Mineral Engineering Society, July–December, 59-62.
  • NAKAMURA, K., NOIKE, T., MATSUMOTO, J., 1986. Effect of operation conditions on biological Fe2+ oxidation with rotating biological contactors. Water Res. 20, 73-79.
  • PATHAK, A, DASTIDA.R., SREEKRISHNAN, T.R., 2009. Bioleaching of Heavy Metals from Sewage Sludge Using Indigenous Iron-Oxidizing Microorganisms: Effect of Substrate Concentration and Total Solids. Technology International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering 3, 326- 331.
  • PESIC, B., OLIVER, DJ., WICHLACZ, P., 1989. An electrochemical method of measuring the oxidation rate of ferrous to ferric iorn with oxygen in the presence of Thiobacillus ferrooxidans. Biotechnol. Bioeng. 33, 428-438.
  • SKOCZKO, I., PIEKUTIN, J., KLOZA, K., 2014. Inżynieria środowiska – młodym okiem. Ścieki i osady ściekowe. Oficyna Wydawnicza Politechniki Białostockiej 5,
  • THEIS, T.L., HAYES, T. D., 1978. Chemistry of heavy metals in anaerobic digestion. In: Chemistry of wastewater technology, ed. by A. J. Rubin. Ann Arbor Science Publishers Inc., Ann Arbor, MI, 403-419.
  • TYAGI, R.D., BLAIS, J.F., AUCLAIR, J.C., MEUNIER, N., 1993. Bacterial leaching of toxic metals from municipal sludge: influence of sludge characteristics. Water Environ. Res. 65, 196–204.
  • UKIWE, L.N., ALLINOR, J.I, EJELE, A.E, ANYADIEGWU, C.I.C., IBENEME, S.I., 2008. Chemical and Biological Leaching Methods to Remove Heavy Metals from Sewage Sludge: A Review. Journal of Advances in Chemistry 4, 509- 516.
  • VALDÉS, J., PEDROSO, I., QUATRINI, R., DODSON, R.J., TETTELIN, H., BLAKE, R., EISEN, J.A., HOLMES, D.S., 2008. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics 9, 597-605.
  • WEN, Y-M., CHENG, Y., TANG, C., CHEN, Z-L., 2013. Bioleaching of heavy metals from sewage sludge using indigenous iron-oxidizing microorganisms. J Soils Sediments 13, 166–175
  • WILK, M., GWOREK, B., 2009. Metale ciężkie w osadach ściekowych. Ochrona Środowiska i Zasobów Naturalnych 39, 40-59.
  • WILLNER, J., FORNALCZYK, A., GAJDA, B., SATERNUS, M., 2018. Bioleaching of indium and tin from used LCD panels. Physicochem. Probl. Miner. Process. 53, 3, 639-645.
  • WILLNER J., KADUKOVA J., FORNALCZYK A., SATERNUS M.; Biohydrometallurgical methods for metals recovery from waste materials. Metalurgija, 2015, 54 (1), s. 255-258
  • WONG, J.W.C., XIANG, L., CHAN, L.C., 2002. pH requirement for bioleaching of heavy metals from anaerobically digested sewage sludge. Water Air Soil Pollut. 138, 25–35.
  • WONG, J.W.C., GU, X.Y., 2008. Optimization of Fe2+/solids content ration for a novel sludge heavy metal bioleaching process. Water Sci. Technol. 57, 445–450.
  • XIANG, L., CHAN, L.C., WONG, J.W.C., 2000. Removal of heavy metals from anaerobically digested sewage sludge by indigenous iron-oxidizing bacteria. Chemosphere 41, 283–287.
  • ZAGURY, G.J., DARTIGUENAVE, Y., SETIER, J.C., 1999. Ex situ electroreclamation of heavy metals contaminated sludge: pilot scale study. J. Environ. Eng. 125, 972-978.
  • VEEKEN, A.H.M., HAMELERS, H.V.M., 1999. Removal of heavy metals from sewage sludge by extraction with organic acids. Elsevier Science Ltd., Istanbul, 129–136.
Uwagi
This paper was created with the financial support of Polish Ministry for Science and Higher Education under internal grant 11/990/BK_20/0074 for Faculty of Materials Engineering, Silesian University of Technology, Poland.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-baaf9abe-ff91-45b2-af2f-f2d719838532
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.