PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Maintaining the water consumption, in an urban system: A probabilistic approach is applied

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Zarządzanie zużyciem wody w systemie miejskim: podejście probabilistyczne
Języki publikacji
EN
Abstrakty
EN
An urban system is influenced by many disruptions that may cause failures for it, in the end. In order to maintain continuity of its operations, analysis of its components operation becomes very necessary. To do this, water infrastructure is chosen from its components to analyze the evolution of the water flow, when the population consumes the drinking water. This infrastructure is essential for the urban system and it is used daily by the population. For examining how to maintain water consumption, the evolution of the discharge head (the maximum height reached by the pipe after the pump) is analyzed and monitored. This height is strongly linked to the drinking water rate. Using water is estimated by a Markov model and the futures heights are prevented. This prevention requires the calculation of the transition probability of the water flow used by the population. An example is provided, where it is determined the level of risk. Under this one, the urban system operates in security, against failures.
PL
Każdy system miejski podlega zakłóceniom, które mogą powodować awarie. W celu utrzymania ciągłości jego działania niezbędna jest analiza działania jego składowych. Wybrano infrastrukturę wodną do analizy zmian przepływu wody w czasie, ze szczególnym uwzględnieniem poboru wody pitnej. Infrastruktura ta jest istotna dla systemu miejskiego, ponieważ pobór wody odbywa się codziennie. Aby zbadać sposób zarządzania zużyciem wody, monitorowano i analizowano zmiany szczytowego przepływu wody (maksymalnej wysokości poziomu za pompą). Ta wysokość jest ściśle związana z przepływem wody pitnej. Zużycie wody ustalono za pomocą modelu Markova w celu zapobiegania przyszłym szczytowym przepływom. Zapobieganie to wymaga obliczenia prawdopodobieństwa przepływów wody używanej przez mieszkańców. Podano przykład wraz z oznaczonym poziomem ryzyka. W przykładowych warunkach system skutecznie przeciwdziałał awariom.
Wydawca
Rocznik
Tom
Strony
157--164
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • University Mohamed V Agdal, Mohammadia Engineering School, Laboratory of Quality Security and Maintenance, Avenue des Nations Unies, Rabat 10000, Morocco
autor
  • University Mohamed V Agdal, Mohammadia Engineering School, Laboratory of Quality Security and Maintenance, Avenue des Nations Unies, Rabat 10000, Morocco
autor
  • University Mohamed V Agdal, Mohammadia Engineering School, Laboratory of Quality Security and Maintenance, Avenue des Nations Unies, Rabat 10000, Morocco
Bibliografia
  • ANDERSSON E. 2006. Urban landscapes and sustainable cities. Ecology and Society. Vol. 11. No. 1, 34.
  • BARRERRE-LUTOFF C. 2000. Le système urbain niçois face à un séisme. Méthode d'analyse des enjeux et des dysfonctionnements potentiels [The urban system of Nice faces an earthquake. Method of analyzing the issues and potential dysfunctions]. Thesis. Chambéry. Savoie University.
  • BERAUD H., BARROCA B., HUBERT G. 2012. Assessing the resilience of urban technical networks: From theory to application to waste management. In: Resilience and urban risk management. Eds. D. Serre, B. Barroca, R. Laganier. CRC Press p. 101–107.
  • BERAUD H., BARROCA B., SERRE D., HUBERT G. 2011. Making urban territories more resilient to flooding by improving the resilience of their waste management network: A methodology for analysing dysfunctions in waste management networks during and after flooding. American Society of Civil Engineers. Vol. 400. No. 52 p. 425–432.
  • BRDYS M., ULANICKI B. 1994. Operational control of water systems: Structures, algorithms and applications. Prentice Hall International. ISBN 0136389740 pp. 400.
  • CAMPANELLA T. J. 2006. Urban resilience and the recovery of New Orleans. Journal of the American Planning Association. Vol. 62. No. 2 p. 141–146.
  • CASTAN BROTO V., BULKELEY H. 2013. Maintaining climate change experiments: Urban political ecology and the everyday reconfiguration of urban infrastructure. International Journal of Urban and Regional Research. Vol. 37. No. 6 p. 1934–1948.
  • CEMBRANO G., QUEVEDO J., PUIG V., PEREZ R., FIGUERAS J., VERDEJO J. M., ESCALER I., RAMON G., BARNET G., RODRIGUEZ P., CASAS M. 2011. Plio: A generic tool for real- time operational predictive optimal control of water networks. Water Science and Technology. Vol. 64. No. 2 p. 448–459.
  • CEMBRANO G., QUEVEDO J., SALAMERO M., PUIG V., FIGUERAS J., MART J. 2004. Optimal control of urban drainage systems: a case study. Control Engineering Practice. Vol. 12. No. 1 p. 1–9.
  • CEMBRANO G., WELLS G., QUEVEDO J., PEREZ R., ARGELAGUET R. 2000. Optimal control of a water distribution network in a supervisory control system. Control Engineering Practice. Vol. 8. No. 10 p. 1177–1188.
  • CHIKDERS L.D., PICKETTB T.A.S., GROVEC, J. M., OGDEND L., WHITMERE A. 2014. Advancing urban sustainability theory and action: Challenges and opportunities. International Journal Landscape and Urban Planning. Vol. 125 p. 320–328.
  • ERNSTON H., VAN DER LEEUW S.E., REDMAN C.L., MEFFER D.J., DAVIS G., ALFSEN CH., ELMQVIST T. 2010. Urban transitions: On urban resilience and human-dominated ecosystems. Ambio. Vol. 39. Iss. 8 p. 531–545.
  • FALCO G.J., RANDOLF W. 2015. Water microgrids: The future of water infrastructure resilience. International Conference on Sustainable Design, Engineering and Construction. Procedia Engineering. Vol. 118 p. 50–57.
  • FILALI-MEKNASSI Y. 2009. L’Etat des Ressources en eau au Maghreb en 2009 [The State of Water Resources in the Maghreb in 2009]. Rabat. UNESCO. ISBN 978-9954-8068-3-0 pp. 408.
  • HOSSEINI M., EMAMJOMEH H. 2014. Entropy-based serviceability assessment of water distribution networks, subjected to natural and man-made hazards. International Journal of Engineering Transactions B: Applications. Vol. 27. No. 5 p. 675–688.
  • KIM D., LIM U. 2016. Urban resilience in climate change adaptation: A conceptual framework. Journal Sustainability. Vol. 8. No. 4 p. 405.
  • LARGE A., TOMASIAN M., ELACHACHI S.M., LE GAT Y., RENAUD E., BREYSSE D. 2015. Optimisation du renouvellement des canalisations d'eau potable: un nouvel indicateur long terme de prédiction des défaillances [A new indicator of long-term fault prediction]. 33èmes Rencontres Universitaires de G´enie Civil. Bayonne, France. 27–29 May 2015 p. 1–8.
  • LAVIGNE J.-C. 1988. Au fil du risque, les villes: une approche symbolique de la gestion urbaine [A symbolic approach of urban management]. Annales de la recherche urbaine. No. 40 p. 11–16.
  • MAYS L. 2004. Urban stormwater management tools. New York. McGraw-Hill Education. ISBN 0071428372 pp. 320.
  • MOINE A. 2007. Le territoire: comment observer un système complexe [Territory: how to observe a complex system]. Paris. Editions l'Harmattan. Itinéraires géographiques. ISBN 978-2-296-03510-2 pp. 178.
  • MOOSAVIAN N., JAEFARZADEH M.R. 2014. Hydraulic analysis of water supply networks using a modified hardy cross method. International Journal of Engineering Transactions C: Aspects. Vol. 27. No. 9 p. 1331–1338.
  • NASH J.E. 1957. The form of the instantaneous unit hydrograph. General Assembly of Toronto. International Association of Hydrological Sciences. Vol. 3 p. 114–121.
  • OCAMPO-MARTINEZ C., PUIG V., CEMBRANO G., CREUS R., MINOVES M. 2009. Improving water management efficiency by using optimization based control strategies: the Barcelona case study. Water Science and Technology: Water Supply. Vol. 9. No. 5 p. 565–575.
  • PELLING M. 2003. The vulnerability of cities. Natural disasters and social resilience. London. Earthscan. ISBN 1-853838292 pp. 224.
  • SANDERS L. 1992. Système de villes et synergétique [Cities system and synergy]. Paris. Anthropos. Coll. Villes. ISBN 2717823255 pp. 274.
  • VAN OVERLOOP P.J. 2006. Model predictive control on open water systems. IOS Press. ISBN 978-1-58603-638-6 pp. 192.
  • YUNG B.B., TOLSON B.A., BURN D.H. 2011. Risk assessment of a water supply system under climate variability: a stochastic approach. Canadian Journal of Civil Engineering. Vol. 38 p. 252–262.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba9718b0-ea19-47a7-be60-bb8503c1cb66
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.