PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative Studies by a Genetic Algorithm on the Mechanical Properties of PLA and Expoxy Biocomposite Materials Reinforced with Alfa Natural Fiber

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The natural bers are indeed a renewable resource, biodegradable and naturally with technical qualities and very high mechanical properties. The mechanical properties of reinforcement biocomposites as alfa / polylactic acid (PLA) are largely conditioned by the interfacial bond between the two materials (ber and matrix). To characterize this link and locate damage to the ber-matrix interface, we used a genetic approach based on the Cox model and formalism of Weibull. This model taking into account the micromechanical behavior of the three composite and biocomposites materials: Glass/epoxy, alfa / epoxy and alfa / PLA. The results of this simulation show that the damage level of the interface is related to the nature of the materials used and the applied mechanical stress, and has shown that the green material alfa / PLA is stronger than the biomaterial alfa / epoxy. The results of this modeling are in agreement with those obtained experimentally by Antoine et al. So the natural bers have a very important role in enhancing the mechanical strength of composite and biocomposites materials.
Słowa kluczowe
EN
Rocznik
Strony
331--345
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
  • Faculty of Physics, U.S.T.O BP 1505 Oran, Algeria
autor
  • Faculty of Physics, U.S.T.O BP 1505 Oran, Algeria
autor
  • Faculty of Physics, U.S.T.O BP 1505 Oran, Algeria
autor
  • Faculty of Physics, Department of Materials and Components U.S.T.H.B, Algiers, Algeria
autor
  • Faculty of Sciences, Department of Physics University of Moulay Tahar, Saida, Algeria
autor
  • Faculty of Physics, Theoretical Physics Laboratory U.S.T.H.B, Algiers, Algeria
Bibliografia
  • [1] Arbelaiz, A., Cantero, G., Fernandez, B., Mondragon, I., Ganan, P. and Kenny, J. M.: Flax fiber surface modifications: Effects on fiber physico mechanical and flax/polypropylene interface properties, Polymer composites, 26, 324–332, 2005.
  • [2] Baley, C.: Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase, Composites. Part A : Applied Science and Manufacturing, 33, 7, 939–948, 2002.
  • [3] Baley, C., Busnel, F., Grohens, Y. and Sire, O.: Influence of chemical treatments on surface properties and adhesion of Flax fibre Polyester resin, Composites. Part A : Applied Science and Manufacturing, 37, 1626–1637, 2002.
  • [4] Beldzki, A. K. and Gassan, J.: Composites reinforced with cellulose based fibers, Polymer science, 24, 221–274, 1999.
  • [5] Le Digou, A., Davies, P. and Baley, C.: Etude de la liaison interfaciale fibre de lin/acide poly(L–lactique) = Study of interfacial bonding of Flax fibre/Poly(L–lactide), Philippe OLIVIER et Jacques LAMON, 10, 2009.
  • [6] Butt, H. J., Cappella, B. and Kappl, M.: Force measurements with atomic force microscope: Technique, interpretations and applications Surface, Science reports, 59, 1–152, 2005.
  • [7] Eichhorn, S. J., Baillie, C. A., Zafeiropoulos, N., Mwaikambo, L. Y., Ansell, M. P., Dufresne, A., Entwistle, K. M., Herrera-Franco, P. J., Escamilla, G. C., Groom, L., Hugues, M., Hill, C., Rialsand, T. G. and Wild, P. M.:Review: current international research into cellulosic fibres and composites, Journal of Materials Science, 36, 2107–2131, 2001.
  • [8] Marais, S., Gouanv, F., Bonnesoeur, A., Grenet, J., Poncin-Epaillard, F., Morvan, C. and Metayer, M.: Unsaturated polyester composites reinforced with flax fibers: effect of cold plasma and autoclave treatments on mechanical and permeation properties, Composites Part A, 36, 975–986.
  • [9] Holmberg, M., Berg, J., Stemme, S., Odbesrg, L. and Rasmusson, J.: Surface Force studies of Langmuir-Blodgett Cellulose Films. Journal of colloid and interface science, 186, 369, 1997.
  • [10] Elouaer, A.: Contribution `a la compr´ehension et `a la modelisation du comportement mecanique de materiaux composites `a renfort en fibres vegetales, PhD Thesis, in French, 2011.
  • [11] Bouzouita, S.: Optimisation des interfaces fibre–matrice de composites `a renfort naturel, Ecole Centrale de Lyon; Ecole Nationale d'Ingenieurs de Monastir, in French, 2011.
  • [12] El Abdi, L.K.: Etude des fibres extraites de la plante Alfa, Rapport de stage de fin d' etudes - ENSISA Mulhouse, 32–37, 2008.
  • [13] Bessadok, A., Marais, S., Roudesli, S., Lixon, C. and Metayer, M.: Influence of chemical modifications on water–sorption and mechanical properties of Agave fibres, Composites, Part A, 39, 29–45, 2008.
  • [14] Bessadok, A., Roudesli, S., Marais, S., Follain, N. and Lebrun, L.: Alfa fibres for unsaturated polyester composites reinforcement: Effects of chemical treatments on mechanical and permeation properties, Composites, Part A, 40, 184–195, 2009.
  • [15] Nadji, H., Diouf, P. N., Benaboura, A., Bedard, Y., Riedl, B. and Stevanovic, T.: Comparative study of lignins isolated from Alfa grass (Stipa tenacissima L.), Bioresource Technology, 100, 3585–3592, 2009.
  • [16] Bouiri, B. and Amrani, M.: Production of dissolving grade pulp from Alfa, Bioresources, 5(1), 291–302, 2009.
  • [17] Brahim, S. B. and Cheikh, R. B.: Influence of fibre orientation and volume fraction on the tensile properties of unidirectional Alfa–polyester composite, Composites Science and Technology, 67, 140–147, 2007.
  • [18] Paiva, M. C., Ammar, I., Campos, A. R., Cheikh, R.B. and Cunha, A. M.: Alfa fibres : Mechanical, morphological and interfacial characterization, Composites Science and Technology, 67, 1132–1138, 2007.
  • [19] Rwawiire, S. and Tomkova, B.: Morphological, Thermal and Mechanical Characterization of Sansevieria trifasciata Fibers, Journal of Natural Fibers, 12, 201–210, DOI: 10.1080/15440478.2014.914006, 2015.
  • [20] Cox, H. L: The elasticity and strength of pape rand other fibrous materials (Elasticte et resistance du papier et autres mat´eriaux fibreux), British Journal of applied Physics, 72–79, 1952.
  • [21] Weibull, W.: A Statistical Distribution Function of Wide Applicability, Journal of Applied Mechanics, 293–297, 1939.
  • [22] Rogge, E.: Extraction and study of the physical and mechanical properties of Esparto grass fibres in order to find textile applications”, Ecole Nationale Superieure d’Ingenieurs Sud–Alsace (UHA), 2010.
  • [23] Caillol, S.: Synthese et caracterisation de nouveaux copolymeres potentiellement autoassociatifs, Material chemistry, Universite Sciences et Technologies - Bordeaux I, in French, 2002.
  • [24] Maghchiche, A.: Characterisation of Esparto Grass Fibers Reinforced Biodegradable Polymer Composites, Biosciences Biotechnology Research, Asia, 10(2), 665–673, 2013.
  • [25] Pras, O.: Utilisation de cellulose pour l’ elaboration de mat eriaux photoluminescents ou conducteurs, Universite de Grenoble, in French, 2011.
  • [26] Wertz, J-L.: Les biocompositess et composites polymeere-chanvre en particulier. Unite de Chimie biologique industrielle, Universite de Liege – Gembloux Agro-Bio Tech., 2014.
  • [27] Mokaddem, A., Alami, M., Doumi, B. and Boutaous, A.: Prediction by a genetic algorithm of the fiber matrix interface damage for composite material. Part1 : study of shear damage to two composites T300/914 and Peek/APC2, Strength of materials, 46, 4, 543–547, 2014.
  • [28] Mokaddem, A., Alami, M., Ziani, N., Beldjoudi, N. and Boutaous, A.: Prediction by a genetic algorithm of the fiber matrix interface damage for composite material. Part2 : study of shear damage to Graphite / Epoxy nanocomposite, Strength of materials, 46, 4, 548–552, 2014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba72aff6-3068-4b55-826a-b03348df3242
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.