PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modyfikacja rusztowania kostnego chitosan/HA za pomocą β-1,3-glukanu znacząco poprawia jego biokompatybilność in vitro

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Modification of bone chitosan/HA scaffold with β-1,3-glucan significantly improves its biocompatibility in vitro
Konferencja
24th Conference on Biomaterials in medicine and veterinary medicine : 9--12 October 2014, Rytro, Poland
Języki publikacji
PL EN
Abstrakty
PL
Inżynieria tkankowa kości kładzie nacisk na produkcje trójwymiarowego, porowatego rusztowania, które posiadałoby zdolność stymulowania adhezji, proliferacji i różnicowania osteoblastów. Takie rusztowanie wspierałoby proces regeneracji i tworzenia funkcjonalnej tkanki kostnej [1-3]. Celem niniejszej pracy było udowodnienie za pomocą 2 linii osteoblastycznych, że dodatek β-1,3-glukanu do rusztowania na bazie chitosanu i hydroksyapatytu (chit/HA) skutkuje wytworzeniem nowego, trójskładnikowego kompozytu chitosan/β-1,3-glukan/hydroksyapatyt (chit/glu/HA), który posiada lepszą biokompatybilność w porównaniu do dwuskładnikowego materiału chit/HA. Trójskładnikowe rusztowanie wyprodukowano poprzez modyfikację kompozytu chit/HA za pomocą bakteryjnego β-1,3-glukanu jak to zostało opisane wcześniej [2,3]. Eksperymenty in vitro przeprowadzono z zastosowaniem linii komórkowej prawidłowych ludzkich płodowych osteoblastów (hFOB 1.19) oraz linii komórkowej mysich preosteoblastów (MC3T3-E1 Subclone 4). Cytotoksyczność materiałów oznaczono metodą kontaktu bezpośredniego za pomocą podwójnego barwienia fluorescencyjnego „żywe/martwe komórki”. Kalceina-AM barwi na zielono jedynie żywe komórki, natomiast jodek propidyny barwi kwasy nukleinowe martwych komórek emitując czerwoną fluorescencję jader komórkowych. Wybarwione komórki obserwowano w mikroskopie konfokalnym. Liczbę osteoblastów przyklejonych do powierzchni rusztowań kostnych określono ilościowo po lizie komórek za pomocą testu LDH total. Wzrost i proliferację komórek na powierzchni biokompozytów oceniono poprzez obserwację w mikroskopie konfokalnym stosując podwójne barwienie fluorescencyjne cytoszkieltu i jąder komórkowych. Komórki linii hFOB 1.19 i MC3T3-E1 hodowano bezpośrednio na powierzchni biomateriałów przez 9 dni. Co trzeci dzień komórki barwiono za pomocą barwników fluorescencyjnych AlexaFluor635phalloidin i Hoechst 33342 w celu oceny ich morfologii oraz wzrostu ich liczby w czasie. Barwnik AlexaFluor635phalloidin zapewnia czerwoną fluorescencję filamentów cytoszkieletu, natomiast Hoechst 33342 barwi jadra komórkowe na niebiesko. Barwienie „żywe/martwe komórki” wykazało zgrupowania żywych, emitujących zieloną fluorescencje komórek na powierzchni obydwu biokompozytów (chit/HA i chit/glu/HA). Jednakże, komórki hFOB 1.19 porastające powierzchnię rusztowania chit/HA były okrągłe i nie wykazywały typowego dla ich morfologii podłużnego kształtu, co sugeruje, że nie przykleiły się do powierzchni chit/HA (RYS.1). Ponadto, na powierzchni materiału chit/HA zaobserwowano dość dużą liczbę martwych, czerwonych komórek linii hFOB 1.19. Komórki hFOB 1.19 hodowane na powierzchni chit/glu/HA były rozpłaszczone i miały podłużny kształt, co świadczy o ich dobrej adhezji do powierzchni tego materiału. Komórki linii MC3T3-E1 porastające powierzchnię obydwu materiałów były rozpłaszczone i miały typowy dla nich gwiazdkowaty kształt. Jedynie pojedyncze martwe, czerwone komórki MC3T3-E1 zaobserwowano na powierzchni tych kompozytów. Jednakże w porównaniu do rusztowania chit/glu/HA, zdecydowanie mniej komórek MC3T3-E1 było na powierzchni kompozytu chit/HA. LDH total test wykazał znacząco lepszą adhezję komórek hFOB 1.19 i MC3T3-E1 do powierzchni materiału chit/glu/HA (RYS. 2). Trzy godziny od momentu inokulacji rusztowań, do powierzchni kompozytu chit/HA przykleiło się 30% (1.6 x 104) komórek linii hFOB 1.19, natomiast do materiału chit/glu/HA 50% (2.6x104) komórek. W przypadku komórek linii MC3T3-E1, do materiału chit/HA przykleiło się 20% (1.9x104) komórek, a do kompozytu chit/glu/HA aż 70% Obserwacja mikroskopowa wykazała dobry wzrost i proliferację osteoblastów linii hFOB 1.19 i MC3T3-E1 jedynie na rusztowaniu chit/glu/HA (RYS. 3). Liczba komórek porastających powierzchnię chit/glu/HA wzrastała wraz z wydłużającym się czasem hodowli in vitro. Osteoblasty miały typową dla danej linii komórkowej morfologię i dobrze rozbudowany cytoszkielet. Fluoryzujące na niebiesko jądra komórkowe były również bardzo dobrze widoczne. Po 9 dniach prowadzenia hodowli, powierzchnia rusztowania chit/glu/HA była pokryta wielowarstwą komórek linii Hiob 1.19 i MC3T3-E1, które posiadały dobrze rozwiniętą sieć filamentów cytoszkieletu i liczne wypustki cytoplazmatyczne. Osteoblasty hodowane na materiale chit/glu/HA były rozpłaszczone i posiadały dobrze rozbudowaną strukturę cytoszkieletu, co sugeruje, że ten materiał sprzyja adhezji i proliferacji komórek. Udowodniono, że materiał chit/HA całkowicie nie sprzyja adhezji, wzrostowi i proliferacji komórek hFOB 1.19. Przez cały czas trwania eksperymentu na powierzchni chit/HA zaobserwowano jedynie pojedyncze, okrągłe komórki hFOB 1.19. Co więcej, ich liczba nie wzrastała w czasie, a komórki były drobne i okrągłe, co może świadczyć o tym, że były martwe. W przypadku komórek linii MC3T3-E1, 3 dni po inokulacji materiału chit/HA zaobserwowano jedynie pojedyncze komórki na powierzchni próbki (RYS. 3). Ponadto, komórki MC3T3-E1 były okrągłe i nie miały typowego gwiazdkowego kształtu, co świadczy o ich słabej adhezji do powierzchni chit/HA. Jednakże, liczba komórek MC3T3-E1 wzrastała w czasie i po 9 dniach prowadzenia hodowli na powierzchni materiału chit/HA zaobserwowano obszary o małej gęstości komórek MC3T3-E1, które miały gwiazdkowaty kształt, widoczny cytoszkielet i wypustki cytoplazmatyczne. Przeprowadzone eksperymenty in vitro oraz uzyskane zdjęcia z mikroskopu konfokalnego wyraźnie udowadniają, że dodatek β-1,3-glukanu do rusztowania chit/HA stymuluje adhezję, wzrost i proliferację komórek linii hFOB 1.19 i MC3T3-E1. Oba testowane biomateriały były nietoksyczne i pozwalały na wstępną adhezję komórek. Jednakże na powierzchni rusztowania zawierającego β-1,3-glukan zaobserwowano znacząco lepsze rozpłaszczanie się komórek, ich szybszy wzrost i proliferację. Analizując uzyskane wyniki można wysnuć wniosek, że nowy trójskładnikowy kompozyt jest obiecującym materiałem do stosowania w inżynierii tkankowej kości jako rusztowanie komórek mające za zadanie przyspieszenie procesów regeneracyjnych oraz tworzenie nowej, funkcjonalnej tkanki kostnej. (7x104) komórek.
EN
Bone tissue engineering put emphasis on fabrication three-dimensional porous scaffolds that possess ability to enhance adhesion, proliferation and differentiation of osteoblast cells, therefore supporting bone regeneration and functional bone tissue formation [1-3]. The aim of this work was to prove using 2 osteoblastic cell lines that addition of β-1,3-glucan to chitosan/hydroxyapatite (chit/HA) scaffold results in fabrication of novel tri-component chitosan/β-1,3-glucan/hydroxyapatite (chit/glu/HA) composite that possesses better biocompatibility compared to bi-component chit/HA material. Tri-component scaffold was fabricated by modification of chit/HA composite with bacterial β-1,3-glucan as was described previously [2,3]. In vitro experiments were carried out using human foetal osteoblast cell line (hFOB 1.19) and mouse calvarial preosteoblast cell line (MC3T3-E1 Subclone 4). Cytotoxicity of the scaffolds was evaluated by direct-contact method using live/dead double fluorescent staining. The calcein-AM dye stains only viable cells giving green fluorescence and propidium iodide dye stains nucleic acids of only dead cells emitting red fluorescence. Stained cells were observed under confocal microscope. Cell adhesion to the scaffold surfaces was determined quantitatively after cell lysis by LDH total test. Cell growth and proliferation on the biocomposite surfaces were evaluated by confocal microscope observation using double fluorescent staining of osteoblast cytoskeleton and nuclei. HFOB 1.19 and MC3T3-E1 cells were cultured directly on the scaffold surfaces for 9 days and every third day cells were stained with AlexaFluor635phalloidin and Hoechst 33342 fluorescent dyes in order to assess cell morphology and increase in cell number. AlexaFluor635phalloidin dye provides red fluorescence of cytoskeletal filaments, while Hoechst 33342 gives blue fluorescence of nuclei. Live/dead double staining showed clusters of viable green fluorescent osteoblast cells on the surface of both biocomposite samples (chit/HA and chit/glu/HA). However, hFOB 1.19 cells growing on the chit/HA surface were spherical and did not reveal their typical lengthened shape what indicates that hFOB 1.19 cells were not attached to the chit/HA surface (FIG.1). Moreover, there were quite a lot of dead, red fluorescent hFOB 1.19 cells on the chit/HA material. HFOB 1.19 cells cultured on the chit/glu/HA sample were flattened and had lengthened shape what proves their good adhesion to the composite surface. MC3T3-E1 cells growing on both materials were flattened and revealed typical stellar shape. Only occasional dead red fluorescent cells were observed. However, there were meaningfully less MC3T3-E1 cells on the surface of chit/HA composite compared to chit/glu/HA sample. LDH total assay demonstrated significantly higher number of hFOB 1.19 and MC3T3-E1 cells attached to the chit/glu/HA compared to the chit/HA sample (FIG. 2). Three hours after cell inoculation there were 30% (1.6x104 cells) and 50% (2.6x10/4 cells) of hFOB 1.19 cells attached to the chit/HA and chit/glu/HA composites, respectively and 20% (1.9x104 cells) and 70% (7x104 cells) of MC3T3-E1 cells attached to the chit/HA and chit/glu/HA scaffolds, respectively. Microscopic observation showed good osteoblast growth and proliferation only on chit/glu/HA scaffold (FIG.3). The number of hFOB 1.19 and MC3T3-E1 cells growing on the chit/glu/HA increased with time during the in vitro culture. Osteoblasts revealed their typical morphology and had well extensive cytoskeleton. There were also well visible blue fluorescent nuclei. After 9-day culture, chit/glu/HA surface was covered by multilayer of hFOB 1.19 and MC3T3-E1 cells, which revealed extensive network of cytoskeletal filaments and numerous filopodia. Osteoblast cells cultured on the chit/glu/HA were well spread, flattened and generated large filamentous structure of the cytoskeleton what indicates that this scaffold is very favourable to cell adhesion and proliferation. The chit/HA biomaterial was proved to be completely unfavourable to adhesion, growth, and proliferation of hFOB 1.19 cells. Only single spherical hFOB 1.19 cells were observed on the chit/HA sample throughout the full length of the experiment. Moreover, the hFOB 1.19 cell number did not increase with time, cells were tiny and spherical what may indicate that were already dead. In the case of MC3T3-E1 cells, 3 days after cell seeding there were only individual MC3T3-E1 cells on the chit/HA surface (Fig. 3). Furthermore, visualized MC3T3-E1 cells were spherical and did not reveal typical stellar shape what indicates that cells were not well attached. However, the number of MC3T3-E1 cells increased with time and 9 days after cell inoculation there was low density culture of stellar shape MC3T3-E1 cells with visible cytoskeleton and filopodia on the chit/HA material. Conducted in vitro experiments and obtained confocal microscopy images clearly prove that addition of β-1,3-glucan to the chit/HA scaffold enhances adhesion, growth, and proliferation of hFOB 1.19 and MC3T3-E1 cells. Both investigated biomaterials were non-toxic and allowed for initial cell attachment. However, significantly better cell spreading, growth, and proliferation were observed on the scaffold containing β-1,3-glucan. Based on the obtained results, it may be inferred that novel tri-component composite is promising material for bone tissue engineering applications as cell scaffold to accelerate bone regeneration and new bone formation process.
Rocznik
Strony
20--22
Opis fizyczny
Bibliogr. 3 poz., wykr., zdj.
Twórcy
autor
  • Uniwersytet Medyczny w Lublinie, Katedra i Zakład Biochemii i Biotechnologii, ul. W.Chodźki 1, 20-093 Lublin
autor
  • Uniwersytet Medyczny w Lublinie, Katedra i Zakład Biochemii i Biotechnologii, ul. W.Chodźki 1, 20-093 Lublin
Bibliografia
  • [1] Chun, J.H., Kim, W.-G., Kim, H.-C., 2008. Fabrication of porous chitosan scaffold in order to improve biocompatibility. J. Phys. Chem. Solids. 69, 1573-1576.
  • [2] Przekora, A., Ginalska, G., 2014. Biological properties of novel chitosan-based composites for medical application as bone substitute. Cent. Eur. J. Biol., 9(6), 634-641.
  • [3] Przekora, A., Palka, K., Ginalska, G., 2014. Chitosan/β-1,3-glucan/calcium phosphate ceramics composites – Novel cell scaffolds for bone tissue engineering application. J. Biotechnol. 182-183(182), 46-53.
Uwagi
PL
Praca finansowana w ramach DS MNd 2. Badania przeprowadzono z wykorzystaniem sprzętu zakupionego w projekcie realizowanym zgodnie z umową nr POPW.01.03.00-06-010/09-00 w ramach Programu Operacyjnego Rozwój Polski Wschodniej 2007-2013, Osi Priorytetowej I, Nowoczesna Gospodarka, Działanie 1.3. Wspieranie Innowacji.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-ba28a351-4377-4b7d-b527-ead91c0caacd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.