PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Considering influence of microstructure morphology of epoxy/glass composite on its behavior under deformation conditions - digital material representation case study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Digital Material Representation (DMR) concept in application to numerical investigation of the two different types of epoxy/glass composite morphologies under loading conditions is addressed within the paper. First, two algorithms for reconstruction of digital microstruc-tures based on metallography investigations are developed. Then, material properties of the investigated epoxy matrix and glass fillers are evaluated based on an in-situ tensile test as well as nano-indentation, respectively. At this stage a numerical investigation is also extended by series of experimental tensile tests to understand basic mechanisms occurring during deformation of the two different types of glass particles fillers. Finally, an example of practical application of the developed digital microstructure model for multi scale calcula-tions of the epoxy/glass composite under loading is presented.
Rocznik
Strony
1304--1315
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Mickiewicza 30 av. 30-059, Krakow, Poland
  • ABB Corporate Research Center, Starowislna 13A st., 31-038 Krakow, Poland
autor
  • AGH University of Science and Technology, Mickiewicza 30 av. 30-059, Krakow, Poland
autor
  • AGH University of Science and Technology, Mickiewicza 30 av. 30-059, Krakow, Poland
autor
  • Institute for Frontier Materials, Deakin University, Pigdons Rd., Warn Ponds Campus, Geelong, Australia
autor
  • Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30 av., 30-059 Krakow, Poland
autor
  • AGH University of Science and Technology, Mickiewicza 30 av. 30-059, Krakow, Poland
autor
  • AGH University of Science and Technology, Mickiewicza 30 av. 30-059, Krakow, Poland
  • Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30 av., 30-059 Krakow, Poland
Bibliografia
  • [1] F.L. Jin, S.J. Park, Thermal properties of epoxy resin/filler hybrid composites, Polymer Degradation and Stability 97 (2012) 2148–2153.
  • [2] T. Na, X. Lie, H. Jiang, L. Zhao, C. Zhao, Enhanced thermal conductivity of fluorinated epoxy resins by incorporating inorganic filler, Reactive and Functional Polymers 128 (2018) 84–90.
  • [3] D. Laouchedi, B. Bezzazi, C. Aribi, Elaboration and characterization of composite material based on epoxy resinand clay fillers, Journal of Applied Research and Technology 15 (2017) 190–204.
  • [4] P.L. Teh, M. Mariatti, H.M. Akil, C.K. Yeoh, K.N. Seetharamu, A.N.R. Wagiman, K.S. Beh, The properties of epoxy resin coated silica fillers composites, Materials Letters 61 (2007) 2156–2158.
  • [5] O.Y. Bozkurta, M. Bulutb, A. Erkliga, W.A. Faydh, Axial and lateral buckling analysis of fiber reinforced S-glass/epoxy composites containing nano-clay particles, Composites Part B 158 (2019) 82–91.
  • [6] A.L. Yesgat, R. Kitey, Effect of filler geometry on fracture mechanisms in glass particle filled epoxy composites, Engineering Fracture Mechanics 160 (2016) 22–41.
  • [7] S.S. Singh, V. Parameswaran, R. Kitey, Dynamic compression behavior of glass filled epoxy composites: Influence of filler shape and exposure to high temperature, Composites Part B 164 (2019) 103–115.
  • [8] M. Pietrzyk, L. Madej, L. Rauch, D. Szeliga, Computational Materials Engineering: achieving high accuracy and efficiency in metals processing simulations, Butterworth-Heinemann Elsevier (2015).
  • [9] L. Madej, Digital/virtual microstructures in application to metals engineering – A review, Archives of Civil and Mechanical Engineering 17 (2017) 839–854.
  • [10] M. Yang, A. Nagarajan, B. Liang, S. Soghrati, New algorithms for virtual reconstruction of heterogeneous microstructures, Computer Methods in Applied Mechanics and Engineering 338 (2018) 275–298.
  • [11] T.J. Turner, P.A. Shade, J.V. Bernier, S. Li, J.C. Schuren, J. Lind, U. Lienert, P. Kenesei, R.M. Suter, B. Blank, J. Almer, Combined near- and far-field high-energy diffraction microscopy dataset for Ti-7Al tensile specimen elastically loaded in situ, Integrating Materials and Manufacturing Innovation (2016) 1–9.
  • [12] P. Bala, K. Tsyrulin, H. Jaksch, M. Stepien, 3D reconstruction and characterization of carbides in Ni-based high carbon alloy in a FIB-SEM system, International Journal of Materials Research 106 (2015) 764–770.
  • [13] S. Zaefferer, S.I. Wright, D. Raabe, Three-dimensional orientation microscopy in a focused ion beam–scanning electron microscope: a new dimension of microstructure characterization, Metallurgical and Materials Transactions A 39 (2008) 374–389.
  • [14] T. Wejrzanowski, W.L. Spychalski, K. Rozniatowski, K.J. Kurzydlowski, Image based analysis of complex microstructures of engineering materials, International Journal of Applied Mathematics and Computer Science 18 (2008) 33–39.
  • [15] J. Von Neumann, in: A.W. Bamk (Ed.), Theory of self reproducing automata, University of Illinois, Urbana, 1966.
  • [16] Y. Liu, L. Cheng, Q. Zeng, Z. Feng, L. Zhang, PCLab – A software with interactive graphical user interface for Monte Carlo and finite element analysis of microstructure-based layered composites, Advances in Engineering Software 90 (2015) 53–62.
  • [17] F. Kruzel, L. Madej, K. Perzynski, K. Banas, Development of 3D adaptive mesh generation for multi scale applications, International Journal for Multiscale Computational Engineering 12 (2014) 257–269.
  • [18] K. Hitti, M. Bernacki, Optimized Dropping and Rolling (ODR) method for packing of poly-disperse spheres, Applied Mathematical Modelling 37 (2013) 5715–5722.
  • [19] L. Madej, K. Pasternak, J. Szyndler, W. Wajda, Development of the modified cellular automata sphere growth model for creation of the digital material representations, Key Engineering Materials 611–612 (2014) 489–496.
  • [20] D. Szeliga, J. Gawad, M. Pietrzyk, Inverse analysis for identification of rheological and friction models in metal forming, Computer Methods in Applied Mechanics and Engineering 195 (2006) 6778–6798.
  • [21] K. Perzynski, G. Cios, G. Szwachta, D. Zych, M. Setty, P. Bala, L. Madej, Numerical modelling of a compression test based on the 3D digital material representation of pulsed laser deposited TiN thin films, 2019, http://dx.doi.org/10.1016/j. tsf.2019.01.012.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b896872d-75d6-4722-b845-a31c9dd58e79
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.