PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption behaviour of As(III) onto synthetic iron-based minerals: a comparative study of akaganeite, goethite and magnetite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Physicochemistry of interfaces - instrumental methods (22-26.08.2021 ; Lublin, Poland)
Języki publikacji
EN
Abstrakty
EN
The present study compares the adsorption capacity of iron-based minerals in removing As(III) from aqueous solutions. The work contains the results of studies carried out on a laboratory scale. The synthetic material was used in three forms as akaganeite, goethite and magnetite. To characterise the minerals before and after adsorption of As(III), specific surface area, particle size distribution, density, and zeta potential were determined. Additionally, digital and optical micrographs, SEM, and FTIR analyses were performed. In the experimental part, the influence of the main parameters on the adsorption efficiency was investigated (pH, initial concentration, contact time, and amount of adsorbent). Adsorption isotherms were fitted by Freundlich, Langmuir, and DubininRadushkevich models. Pseudo-first-order (PFO), pseudo-second-order (PSO), and intraparticle diffusion (IPD) models were used to fit the kinetics data. Linear regression was used to estimate the parameters of isotherm and kinetic models. FTIR measurements gave helpful information on the synthesised minerals and the As(III) removal process. Results show that As(III) adsorption is related to the iron-based adsorbents, and adsorption efficiency increases in the following order: goethite < magnetite < akaganeite.
Rocznik
Strony
art. no. 144818
Opis fizyczny
Bibliogr. 52 poz., rys. kolor., tab., wykr.
Twórcy
  • Department of Process Engineering and Technology of Polymers and Carbon Materials, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego Street 27, Wrocław, Lower Silesia 50-370, Poland
Bibliografia
  • AJITH, N., SATPATI, A.K., DEBNATH, A.K., SWAIN, K.K., 2021. Evidences on As(III) and As(V) interaction with iron(III) oxides: Hematite and goethite. J. Environ. Sci. Health 56, 1007-1018.
  • AL-JABRI, M.T.K., DEVI, M.G., AL ABRI, M., 2018. Synthesis, characterization and application of magnetic nanoparticles in the removal of copper from aqueous solution. Appl Water Sci 8, 223-230.
  • ALLEN, S.J., McKAY, G., KHADER, K.Y., 1989. Intraparticle diffusion of basic dye during adsorption onto sphagnum peat. Environ. Pollut. 50, 39-50.
  • BENZAOUI, T., SELATNIA, A., DJABALI, D., 2017. Adsorption of copper (II) ions from aqueous solution using bottom ash of expired drugs incineration. Adsorp Sci Technol 0, 1-16.
  • BERING, B.P., DUBININ, M.N., SERPINSKY, V.V., 1972. On thermodynamics of adsorption in micropores. J. Colloid Interface Sci 38, 185–194.
  • BHANDARI, N., REEDER, R.J., STRONGIN, D.R., 2012. Photoinduced oxidation of arsenite to arsenate in the presence of goethite. Environ. Sci. Technol. 46, 8044-8051.
  • CHIRITA, M., BANICA, R., IETA, A., GROZESCU, I., 2012. Superparamagnetic unusual behavior of micrometric magnetite monodisperse monocrystals synthesized by Fe-EDTA thermal decomposition. Part. Sci. Technol. 30, 354–363.
  • ÇIFTÇIA, H., ERSOYA, B., EVCIN, A., 2017. Synthesis, characterization and Cr(VI) adsorption properties of modified magnetite nanoparticles. Acta Phys. Pol. 132, 564-569.
  • DAUS, B., WENNRICH, R., WEISS, H., 2004. Sorption materials for arsenic removal from water, a comparative study.Water Res. 38, 2948-2954.
  • DELIYANNI, E.A., NALBANDIAN, L., MATIS, K.A., 2006, Adsorptive removal of arsenites by a nanocrystalline hybrid surfactant–akageneite sorbent. J. Colloid Interface Sci. 302, 458-466.
  • DELIYANNI., E.A., PELEKA, E.N., MATIS, K.A., 2009. Modeling the sorption of metal ions from aqueous solution by iron-based adsorbents. J. Hazard. Mater. 172, 550-558.
  • DUBE, D., PARELCH, C.T., NYONI, B., 2016. Removal of chromium and nickel from electroplating wastewater using magnetite particulate adsorbent, (1) Effect of pH, contact time and dosage, (2) Adsorption isotherms and kinetics. MAS 10, 222-232.
  • EISLER, R., 2004. Arsenic hazards to humans, plants, and animals from gold mining. Rev Environ Contam Toxicol. 180,133-165.
  • FOO, K.Y., HAMMED, B.H., 2010. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156, 2–10.
  • FREUNDLICH, H.M.F., 1906. Über die Adsorption Lösungen. Z. Phys. Chem. 57, 385–470.
  • FU, H., QUAN, X., 2006. Complexes of fulvic acid on the surface of hematite, goethite, and akageneite, FTIR observation. Chemosphere 63, 403-410.
  • GHOSH, M.K., EDDY, G., POINERN, J., ISSA, T.B., SING, P., 2012. Arsenic adsorption on goethite nanoparticles produced through hydrazine sulfate assisted synthesis method. Korean J. Chem. Eng. 29, 95-102.
  • HAO, L., LIU, M., WANG, N., LI, G., 2018. A critical review on arsenic removal from water using iron-based adsorbents. RSC Adv. 8, 39545-39560.
  • HO, Y.S., 2004. Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 59, 171–177.
  • HO, Y.S., MCKAY, G., 1999. Pseudo-second order model for sorption processes. Process Biochem. 34, 451–465.
  • KANEL, S.R., MANNING, B., CHARLET, L., CHOI, H., 2005. Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ. Sci. Technol. 39, 1291-1298.
  • KIM, J., LI, W., PHILIPS, B.L., GREY, C.P., 2011. Phosphate adsorption on the iron oxyhydroxides goethite (α-FeOOH), akageneite (β-FeOOH) and lepidocrocite (γ-FeOOH), a 31P NMR study. Energy Environ. Sci. 4, 4298-4305.
  • KOLBE, F., WEISS, H., MORGENSTERN, P., WENNRICH, R., LORENZ, W., SCHURK, K., STANJEK, H., DAUS, B., 2011. Sorption of aqueous antimony and arsenic species onto akageneite. J. Colloid Interface Sci 357, 460-465.
  • KYZAS, G.Z., PELEKA, E.N., DELIYANNI, E.A., 2013. Nanocrystalline akageneite as adsorbent for surfactant removal from aqueous solutions. Materials 6, 184-197.
  • LAGERGREN, S., 1898. Zur theorie der Sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar 24, 1–24.
  • LANGMUIR, I., 1916. The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 38, 2221–2295.
  • LANGSCH, J.E., COSTA, M., MOORE, L., MORAIS, P., BELLEZZA, A., FALCÃO, S., 2012. New technology for arsenic removal from mining effluents. JMR&T 1,178-181.
  • LASHEEN, M.R., EL-SHERIF, I.Y., SABRY, D.Y., EL-WAKEEL, S.T., EL-SHAHAT, M.F., 2015. Adsorption of heavy metals from aqueous solution by magnetite nanoparticles and magnetite-kaolinite nanocomposite, equilibrium isotherm and kinetic study. Desalin. Water Treat. 57, 17421-17429.
  • LEE, S.M., LALHMUNSIAMA, C., THANHMINGLIANA, TIWANI, D., 2015. Porous hybrid materials in the remediation of water contaminated with As(III) and As(V). Chem. Eng. J. 270, 496-507.
  • LIU, C.H., CHUANG, Y.H., CHEN, T.Y., TIAN, Y., LI, H., WANG, M.K., ZHANG, W., 2015. Mechanism of arsenic adsorption on magnetite nanoparticles from water, Thermodynamic and spectroscopic studies. Enviro. Sci. Technol. 49,7726-7734.
  • MAMINDY-PAJANY, Y., HUREL, C., MARMIER, N., ROMEO, M., 2011. Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron, Effects of pH, concentration and reversibility. Desalination 281, 93-99.
  • MOHAPATRA, M., MOHAPATRA, L., SINGH, P., ANAND, S., MISHRA, B.K., 2010. A comparative study on Pb(II), Cd(II), Cu(II), Co(II) adsorption from single and binary aqueous solutions on additive assisted nano-structured goethite. Int. J. Eng. Sci. Technol. 2, 89-103.
  • MONDAL, M.K., GARG, R., 2017. A comprehensive review on removal of arsenic using activated carbon prepared from easily available waste materials. Environ Sci Pollut Res 24, 13295–13306.
  • MONDAL, P., MAJUMDER, C.B., MOHANTY, B., 2008. Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon. J. Hazard. Mater. 150, 695–702
  • MUDZIELWANA, R., GITARI, M.W., NDUNGU, P., 2020. Enhanced As(III) and As(V) adsorption from aqueous solution by a day based hybrid sorbent. Green Sustain. Chem. 7, 913.
  • MUSTAFA, G., SINGH, B., KOOKANA, R.S., 2004. Cadmium adsorption and desorption behaviour on goethite at low equilibrium concentrations effects of pH and index cations. Chemosphere 57, 1325-1333.
  • NGUYEN, V.D., NGUYEN, H.T.H., VRANOVA, V., NGUYEN, L.T.N., BUI, Q.M., KHIEU, T.T., 2021. Artificial neutral network modeling for Congo red adsorption on microwave-synthesized akageneite nanoparticles, optimization, kinetics, mechanism, and thermodynamics. Environ. Sci. Pollut. Res. Int. 28, 9133-9145.
  • OTTE, K., SCHMAHL, W.W., PENTCHEVA, R., 2013. DFT+U Study of arsenate adsorption pn FeOOH surfaces,Evidence for competing binding mechanisms. J. Phys. Chem. 117, 15571-15582.
  • POLOWCZYK, I., CYGANOWSKI, P., ULATOWSKA, J., SAWIŃSKI, W., BASTRZYK, A., 2018. Synthetic iron oxides for adsorptive removal of arsenic. Water Air Soil Pollut 229, 203-213.
  • QIU, H., LV, L., PAN, B., ZHANG, Q., ZHANG, W., ZHANG, Q., 2009. Critical review in adsorption kinetic models.JZUS A 10, 716–724.
  • SCHWERTMANN, U., CORNELL, R.M., 2000. Iron Oxides in the Laboratory, Preparation and Characterization. WILEY-VCH Verlag GmbH, Weinheim, Germany, doi,10.1002/9783527613229
  • SHI, M., MIN, X., KE, Y., LIN, Z., YANG, Z., WANG, S., PENG, N., YAN, X., LUO, S., WU, J., WEI, Y., 2021. Recent progress in understanding the mechanism of heavy metals retention by iron(oxyhydr)oxides. Sci. Total Environ. 752, 141930.
  • SZEWCZUK-KARPISZ, K., TOMCZYK, A., CELIŃSKA, M., SOKOŁOWSKA, Z., KUŚMIERZ, M., 2021. Carboxin and diuron adsorption mechanism on sunflower husks biochar and goethite in the single/mixed pesticide solutions.Materials 14, 2584.
  • SZLACHTA, M., WÓJTOWICZ, P., 2016. Treatment of arsenic-rich waters using granular iron hydroxides. Desalin. Water Treat. 57, 26376-26381.
  • TSIBRANSKA, I., HRISTOVA, E., 2011. Comparison of different kinetic models for adsorption of heavy metals onto activated carbon from apricot stones. Bulgarian Chemical Communications 43, 370 – 377.
  • VENERANDA, M., ARAMENDIA, J., BELLOT-GURLET, L., COLOMBAN, P., CASTRO, K., MADARIAGA, J.M., 2018. FTIR spectroscopic semi-quantification of iron phases, A new method to evaluate the protection ability index (PAI) of archaeological artefacts corrosion systems. Corrosion Science 133, 68-77.
  • WANG, J., GUO, X., 2020. Adsorption isotherm models, Classification, physical meaning, application and solving method.Chemosphere 258, 127279.
  • WANG, X.S., LU, H.J., ZHU, L., LIU, F., REN, J.J., 2010. Adsorption of lead(II) ions onto magnetite nanoparticles.Adsorpt. Sci. Technol. 28, 407-417.
  • WEBER, JR., W.J., MORRIS, J.C., 1963. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. – ASCE 89,31-59.
  • WOLKERSDORFER, C., BOWELL, R., 2005. Contemporary reviews of mine water studeie in Europe. Part 2. Mine Water Environ 24, 2-37.
  • ZHANG, Y.X., JIA, Y., 2014. A facile solution approach for the synthesis of akaganéite (β-FeOOH) nanorods and their ionexchange mechanism toward As(V) ions. Appl. Surf. Sci. 290, 102-106.
  • ZHAO, J., LIN, W., CHANG, Q., LI, W., LAI, Y., 2012. Adsorptive characteristics of akageneite and its environmental applications, a review. Environ. Technol. Rev. 1, 114-126.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b7c19210-e55b-41f2-b53b-db207cdc39ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.