Identyfikatory
Warianty tytułu
Implementacja programowa sterowania modulacją gęstości impulsów dla szeregowo-rezonansowych przetwornic z mostkiem H
Języki publikacji
Abstrakty
The paper presents an approach to the software implementation of pulse-density modulation (PDM) control for H-bridge series-resonant converters. The formation of pulse-density modulated control signals directly by a microcontroller makes it possible to avoid using many additional chips for the hardware implementation of PDM control. For this purpose, four control patterns and transactions between them are described. Moreover, the features of the organization PDM sequences in the source code of the microcontroller are discussed, and an algorithm for choosing control patterns and preparing timer registers is shown.
W artykule przedstawiono podejście do implementacji programowej sterowania modulacją gęstości impulsów (PDM) dla przekształtników szeregowo-rezonansowych z mostkiem H. Tworzenie sygnałów sterujących o modulowanej gęstości impulsów bezpośrednio przez mikrokontroler umożliwia uniknięcie stosowania wielu dodatkowych układów scalonych do sprzętowej implementacji sterowania PDM. W tym celu opisano cztery wzorce sterowania oraz transakcje między nimi. Ponadto omówiono cechy organizacji sekwencji PDM w kodzie źródłowym mikrokontrolera oraz przedstawiono algorytm wyboru wzorców sterowania i przygotowania rejestrów czasowych.
Wydawca
Czasopismo
Rocznik
Tom
Strony
116--119
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
- Department of Transistor Converters, Institute of Electrodynamics of NASU, 56 Beresteysky Avenue, office 457, 03057, Kyiv, Ukraine
Bibliografia
- [1] Kim J.-W., Lee M., and Lai J.-S., A new control method for series resonant inverter with inherently phase-locked coil current with induction cookware applications, Proc. 2018 IEEE APEC, 2018, 3517-3522, doi: 10.1109/APEC.2018.8341611
- [2] Bayindir N.S., Kukrer O., and Yakup M., DSP-based PLL-controlled 50-100 kHz 20 kW high-frequency induction heating system for surface hardening and welding applications, IEE Proc. Electric Power Appl., 150 (2003), No. 3, 365-371, doi: 10.1049/ip-epa:20030096
- [3] Namadmalan A., Universal Tuning System for Series Resonant Induction Heating Applications, IEEE Transactions on Industrial Electronics, 64 (2017), No. 4, 2801-2808, doi: 10.1109/TIE.2016.2638399
- [4] Wu K.Y., Zhang T., He Z.W., Jiang X.M., and Liu X.G., STM32-based digital charging power supply, Proc. Int. Conf. Electron., Elect. Eng. and Inf. Science, (2015), 37-47, doi: 10.1142/9789814740135_0005
- [5] Jimenez O., Lucia O., Urriza I., Barragan L.A., and Navarro D., Design and Evaluation of a Low-Cost High Performance Σ–Δ ADC for Embedded Control Systems in Induction Heating Appliances, IEEE Transactions on Industrial Electronics, 61 (2002), No. 5, 2601-2611, doi: 10.1109/TIE.2013.2278524
- [6] Hassaine L. and Bengourina M.R., Design and digital implementation of power control strategy for grid connected photovoltaic inverter, International Journal of Power Electronics and Drive System, 10 (2019), No. 3, 1564-1574, doi: 10.11591/ijpeds.v10.i3.1564-1574
- [7] Puyal D., Barragan L.A., Acero J., Burdio J.M., and Millan I., An FPGA-Based Digital Modulator for Full- or Half Bridge Inverter Control, IEEE Trans. Power Electron., 21 (2006), No. 5, 1479-1483, doi: 10.1109/TPEL.2006.880234
- [8] de Castro A., Zumel P., Garcia O., Riesgo T., and Uceda J., Concurrent and simple digital controller of an AC/DC converter with power factor correction based on an FPGA, IEEE Transactions on Power Electronics, 18 (2003), No. 1, 334-343, doi: 10.1109/TPEL.2002.807106
- [9] Fujimori T. and Watanabe M., Gate density advantage of parallel-operation-oriented FPGA architecture, Proc. IEEE NAECON, 2017, 155-158, doi: 10.1109/NAECON.2017.8268761
- [10] Jimenez O., Lucia O., Urriza I., Barragan L.A., Mattavelli P., and Boroyevich D., An FPGA-Based Gain Scheduled Controller for Resonant Converters Applied to Induction Cooktops, IEEE Transactions on Power Electronics, 29 (2014), No. 4, 2143-2152, doi: 10.1109/TPEL.2013.2276041
- [11] Rajaraman J., Prajapati V., Bhagat M., Rao Y.S., and Sawant R.R., Implementation of a digital controller using DSP TMS320F28335 for frequency and power tracking of load resonant inverters, Proc. IEEE ICIT, 2016, 1085-1090, doi: 10.1109/ICIT.2016.7474905
- [12] Martin-Segura G., Sala-Perez P., Ferrater-Simon C., Lopez-Mestre J., Bergas-Jane J., and Montesinos-Miracle D., All-digital DSP-based phase locked loop for induction heating applications, Int. Trans. Electr. Energ. Syst., 23 (2013), No. 7, 1095-1106, doi: 10.1002/etep.1640
- [13] Fujita H. and Akagi H., Control and performance of a pulse density-modulated series-resonant inverter for corona discharge processes, IEEE Transactions on Industry Applications, 35 (1999), No. 3, 621-627, doi: 10.1109/28.767013
- [14] Sandali A., Cheriti A., and Sicard P., Simple PDM pattern generation for an AC/AC resonant converter, Proc. IEEE IECON, 2002, 294-299, doi: 10.1109/IECON.2002.1187524
- [15] Esteve V., et al., Enhanced Pulse-Density-Modulated Power Control for High-Frequency Induction Heating Inverters, IEEE Transactions on Industrial Electronics, 62 (2015), No. 11, 6905- 6914, doi: 10.1109/TIE.2015.2436352
- [16] Chen S., Li H., and Tang Y., A burst mode pulse density modulation scheme for inductive power transfer systems without communication modules, Proc. IEEE APEC, 2018, 1071-1075, doi: 10.1109/APEC.2018.8341148
- [17] Karafil A., Ozbay H., and Oncu S., Design and Analysis of Single-Phase Grid-Tied Inverter With PDM MPPT-Controlled Converter, IEEE Transactions on Power Electronics, 35 (2020), No. 5, 4756-4766, doi: 10.1109/TPEL.2019.2944617
- [18] Herasymenko P., Pavlovskyi V., Soft start-up strategy of pulse-density-modulated series-resonant converter for induction heating application, International Journal of Power Electronics and Drive System, 12 (2021), No. 1, 258-272, doi: 10.11591/ijpeds.v12.i1.pp258-272
- [19] Herasymenko P. and Yurchenko O., An Extended Pulse Density-Modulated Series-Resonant Inverter for Induction Heating Applications, Proc. IEEE RTUCON, 2020, pp. 1-8, doi: 10.1109/RTUCON51174.2020.9316617
- [20] Sheng X., Shi L., and Fan M., An Improved Pulse Density Modulation of High-Frequency Inverter in ICPT System, IEEE Transactions on Industrial Electronics, 68 (2021), No. 9, 8017- 8027, doi: 10.1109/TIE.2020.3013782
- [21] Herasymenko P., Pavlovskyi V., Yurchenko O., A series-resonant inverter with extended topology and pulse density-modulation control for induction heating applications, International Journal of Power Electronics and Drive Systems, 13 (2022), No. 1, 348-367, doi: 10.11591/ijpeds.v13.i1.pp348- 367
- [22] Herasymenko P., Combined PS-PDM control method for voltage-source series-resonant inverter, Przeglad Elektrotechniczny, 97 (2021), No. 5, 40-45, doi: 10.15199/48.2021.05.07
- [23] Herasymenko P., Inexpensive, high-performance STM32- based software PLL for series-resonant inverters, Przeglad Elektrotechniczny, 98 (2022), No. 8, 132-138, doi: 10.15199/48.2022.08.25
- [24] AN4539 - Application note “HRTIM cookbook”. Available online: https://www.st.com/content/ccc/resource/technical/document/a pplication_note/13/d6/48/9d/11/11/4c/08/DM00121475.pdf/files/ DM00121475.pdf/jcr:content/translations/en.DM00121475.pdf
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b786f817-301c-415c-a4c0-299d8d65ab90