PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Centrifuge model test of parallel shield underneath high-speed railway tunnel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to study the ground disturbance and the influence relationship between the two tunnels during the construction of the new shield tunnel undercrossing the existing high-speed railway tunnel, the centrifuge test was used to simulate the construction of the parallel shield tunnel undercrossing the high-speed railway tunnel, and the variation law of the internal force, segment deformation and surface settlement of the existing high-speed railway tunnel undercrossing the shield was studied. It is found that the adverse effects caused by the later tunnel are less than those caused by the first tunnel excavation. For the existing tunnels without settlement joints, the longitudinal settlement of the inverted arch and the vault is U-shaped and anti-U-shaped respectively. The settlement value of the ground surface and the existing tunnel is increased by more than 100%. When the shield passes through the high-speed railway tunnel, the transverse bending strain is larger than the longitudinal, and special attention should be paid at the corner.
Twórcy
autor
  • Central South University, School of Civil Engineering, Changsha, China
  • China Railway Design Corporation, Tianjin, China
autor
  • Central South University, School of Civil Engineering, Changsha, China
  • China Railway Design Corporation, Tianjin, China
autor
  • China Railway Design Corporation, Tianjin, China
autor
  • China Railway Design Corporation, Tianjin, China
Bibliografia
  • [1] S.H. Kim, H.J. Burd, G.W.E. Milligan, “Model testing of closely spaced tunnels in clay”, Géotechnique, 1998, vol. 48, no. 3, pp. 375-388, DOI: 10.1680/geot.1998.48.3.375.
  • [2] C.W.W. Ng, T. Boonyarak, D. Mašín, “Effects of Pillar depth and shielding on the interaction of crossing multitunnels”, Journal of Geotechnical and Geoenvironmental Engineering, 2015, vol. 141, no. 6, DOI: 10.1061/(ASCE)GT.1943-5606.0001293.
  • [3] C.W.W. Ng, T. Boonyarak, D. Mašín, “Three-dimensional centrifuge and numerical modeling of the interaction between perpendicularly crossing tunnels”, Canadian Geotechnical Journal, 2013, vol. 50, no. 9, pp. 935-946, DOI: 10.1139/cgj-2012-0445.
  • [4] C.W.W. Ng, R. Wang, T. Boonyarak, “A comparative study of the different responses of circular and horseshoe-shaped tunnels to an advancing tunnel underneath”, Géotechnique Letters, 2016, vol. 6, no. 2, pp. 168-175, DOI: 10.1680/jgele.16.00001.
  • [5] C.Y. Gue, M.J. Wilcock, M.M. Alhaddad, et al., “Tunneling close beneath an existing tunnel in clay-perpendicular under crossing”, Géotechnique, 2017, vol. 67, no. 9, pp. 795-807, DOI: 10.1680/jgeot.SiP17.P.117.
  • [6] T. Boonyarak, C.W.W. Ng, “Effects of construction sequence and cover depth on crossing-tunnel interaction”, Canadian Geotechnical Journal, 2015, vol. 52, no. 7, pp. 851-867, DOI: 10.1139/cgj-2014-0235.
  • [7] T.I. Addenbrooke, D.M. Potts, “Twin tunnel interaction: surface and subsurface effects”, The International Journal of Geomechanics, 2001, vol. 1, no. 2, pp. 249-271, DOI: 10.1061/(ASCE)1532-3641(2001)1:2(249).
  • [8] R.Kuszyk, A. Siemińska-Lewandowska, “Subsidence trough asymmetry calculations in twin tubeTBM tunnelling”, Archives of Civil Engineering, 2021, vol. 67, no. 2, pp. 675-689, DOI: 10.24425/ace.2021.137191.
  • [9] X.L. Ngueyen, L. Wu, K.T. Nguyen, et al., “Research on launching technology of shield tunnel in Ho Chi Minh Metro line 1”, Archives of Civil Engineering, 2021, vol. 67, no. 1, pp. 387-401, DOI: 10.24425/ace.2021.136479.
  • [10] Z. Zhang, M. Huang, “Geotechnical influence on existing subway tunnels induced by multiline tunneling in Shanghai soft soil”, Computers and Geotechnics, 2014, vol. 56, pp. 121-132, DOI: 10.1016/j.compgeo.2013.11.008.
  • [11] C. González-Nicieza, A.E. Álvarez-Vigil, A. Menéndez-Díaz, et al., “Influence of the depth and shape of a tunnel in the application of the convergence-confinement method”, Tunnelling and Underground Space Technology, 2008, vol. 23, no. 1, pp. 25-37, DOI: 10.1016/j.tust.2006.12.001.
  • [12] L. Chen, “Effect of twin-tunnel excavation on existing horseshoe shaped tunnel”, M. Philos. thesis, Hong Kong University of Science and Technology, 2016.
  • [13] X.G. Li, D.J. Yuan, “Response of a double-decked metro tunnel to shield driving of twin closely undercrossing tunnels”, Tunnelling and Underground Space Technology, 2012, vol. 28, pp. 18-30, DOI: 10.1016/j.tust.2011.08.005.
  • [14] X. Huang, H. Huang, J. Zhang, “Flattening of jointed shield-driven tunnel induced by longitudinal differential settlements”, Tunnelling and Underground Space Technology, 2012, vol. 31, pp. 20-32, DOI: 10.1016/j.tust.2012.04.002.
  • [15] F. Ye, C.F. Gou, H.D. Sun, et al., “Model test study on effective ratio of segment transverse bending rigidity of shield tunnel”, Tunnelling and Underground Space Technology, 2014, vol. 41, pp. 193-205, DOI: 10.1016/j.tust.2013.12.011.
  • [16] J. Shi, C.W.W. Ng, Y. Chen, “Three-dimensional numerical parametric study of the influence of basement excavation on existing tunnel”, Computers and Geotechnics, 2015, vol. 63, pp. 146-158, DOI: 10.1016/j.compgeo.2014.09.002.
  • [17] D.J. Goodings, D.R. Gillette, “Model size effects in centrifuge models of granular slope instability”, Geotechnical Testing Journal, 1996, vol. 19, no. 3, pp. 277-285, DOI: 10.1520/GTJ10353J.
  • [18] S. Yamashita, M. Jamiolkowski, D.C.F. Lo Presti, “Stiffness nonlinearity of three sands”, Journal of Geotechnical and Geoenvironmental Engineering, 2000, vol. 126, no. 10, pp. 929-938, DOI: 10.1061/(ASCE)1090-0241(2000)126:10(929).
  • [19] K. Ishihara, “Liquefaction and flow failure during earthquakes”, Géotechnique, 1993, vol. 43, no. 3, pp. 351-415, DOI: 10.1680/geot.1993.43.3.351.
  • [20] R. Chen, X. Lin, X. Kang, et al., “Deformation and stress characteristics of existing twin tunnels induced by close-distance EPBS under-crossing”, Tunnelling and Underground Space Technology, 2018, vol. 82, no. 12, pp. 468-481, DOI: 10.1016/j.tust.2018.08.059.
  • [21] ACI Committee, ACI 318M-11 Building code requirements for structural concrete and commentary. Farmington Hills, MI: ACI, 2001.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b557f403-2915-4f3a-b9af-2ccd3d40e7f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.