PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of selected coagulants of indicator and dioxin-like pcb removal from drinking water

Autorzy
Identyfikatory
Warianty tytułu
PL
Wpływ wybranych koagulantów na usuwanie wskaźnikowych i dioksynopodobnych pcb z wody przeznaczonej do spożycia
Języki publikacji
EN
Abstrakty
EN
The aim of the research was to compare selected coagulants efficiency in indicator and chosen dioxin-like PCB removal from surface water. As coagulants, there were used aluminium sulfate and 5 hydrolyzed polyaluminium chlorides, with trade names: PAX-XL1, PAX-XL10, PAX-XL19, PAX-XL60, PAX-XL69. For the research, surface water was used, collected from dam reservoir. The water composition was modified with standard mixtures PCB MIX24 and MIX13, in order to obtain concentration of each congener equal to 300 ng/dm3. The PCB MIX24 mixture was composed of indicator congeners solution: 28, 52, 101, 118, 138, 153, and 180, whereas the MIX13 mixture - solution of three dioxin-like PCB 77, PCB 126, and PCB 169. It was demonstrated that the application of aluminium sulfate allowed for reaching better effects for purifying water of PCB, than with the usage of pre-hydrolyzed salts, polyaluminium chlorides. Out of the studied coagulants, the best effects for indicator PCB removal were obtained with the application of aluminium sulfate, total PCB concentration was decreased by 65%. The highest efficiency for indicator congeners removal (90%) was obtained for PCB 138 and 153. After the application of hydrolyzed polyaluminium chlorides PAX-XL1, PAX-XL10 decrease in higher chlorinated PCB concentration was obtained, in the range of 23 to 74%. Selectivity of chosen PCB congener removal, depending on applied coagulant, was demonstrated; with the usage of aluminium sulfate, removal of heptachlorobiphenyl PCB 180 at the level of 34% was obtained, whereas with the application of PAX-XL1 and PAX-XL10 higher reduction efficiency for this congener was obtained, i.e. 83 and 74% respectively. For dioxin-like PCB, after application of aluminium sulfate, total concentration reduction by 74% was obtained, efficiency of this congeners removal amounted to from 54 (PCB 77) up to 72% (PCB 126), similar results were obtained after the usage of PAX-XL1. The lowest PCB removal from water rate was stated for coagulants PAX-XL60 and PAX-XL69.
Rocznik
Strony
41--51
Opis fizyczny
Bibliogr. 19 poz., wykr., tab.
Twórcy
autor
  • Department of Chemistry, Water and Wastewater Technology, Faculty of Infrastructure and Environment, Czestochowa University of Technology, ul. J.H. Dąbrowskiego 69, 42-200 Częstochowa, Poland, phone +48 34 325 04 96
Bibliografia
  • [1] Alexander JT, Faisal I, Hai FI, Al-aboud TM. Chemical coagulation-based processes for trace organic contaminant removal. Current state and future potential. J Environ Manage. 2012;111:195-207. DOI: 10.1016/j.jenvman.2012.07.023.
  • [2] Zhao H, Hu C, Liu H, Zhao X, Qu J. Role of aluminum speciation in the removal of disinfection byproduct precursors by a coagulation process. Environ Sci Technol. 2008;42:5752-758. DOI: 10.1021/es8006035.
  • [3] Van den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M, et al. The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci. 2006;93:223-241. DOI: 10.1093/toxsci/kfl055.
  • [4] Howell NL, Suarez MP, Riafi HS, Koenig L. Concentration of polychlorinated biphenyls (PCBs) in water, sediment and aquatic biota in the Huston Ship Chanel, Texas. Chemosphere. 2008;70:593-606. DOI: 10.1016/j.chemosphere.2007.07.031.
  • [5] Dąbrowska L. Removal of organic matter from surface water using coagulants with various basicity. J Ecol Eng. 2016;17:66-72. DOI: 10.12911/22998993/63307.
  • [6] Qin J-J, Oo MH, Kekre KA, Knops F, Miller P. Impact of coagulation pH on enhanced removal of natural organic matter in treatment of reservoir water. Sep Purif Technol. 2006;49:295-298 DOI: 10.1016/j.seppur.2005.09.016.
  • [7] Tadkaew N, Hai FI, McDonald JA, Khan SJ, Nghiem LD. Removal of trace organics by MBR treatment: the role of molecular properties. Water Res. 2011;45(8):2439-2451. DOI: 10.1016/j.watres.2011.01.023.
  • [8] Thuy PT, Moons K, van Dijk JC, Anh NV, van der Bruggen B. To what extent are pesticides removed from surface water during coagulation-flocculation? Water Environ J. 2008;22:217-223. DOI: 10.1111/j.1747-6593.2008.00128.x.
  • [9] Li X, Peng P, Zhanga S, Man R, Sheng G, Fu J. Removal of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans by three coagulants in simulated coagulation processes for drinking water treatment. J Hazard Mater. 2009;162:180-185. DOI: 10.1016/j.jhazmat.2008.05.030.
  • [10] Bodzek M, Dudziak M. Removal of natural estrogens and synthetic compounds considered to be endocrine disrupting substances (EDs) by coagulation and nanofiltration. Pol J Environ Stud. 2006;15(1):35-40. http://www.pjoes.com/pdf/15.1/Pol.J.Environ.Stud.Vol.15.No.1.35-40.pdf.
  • [11] Ternes TA, Meisenheimer M, McDowell D, Sacher F, Brauch HJ, Haist-Gulde B, et al. Removal of pharmaceuticals during drinking water treatment. Environ Sci Technol. 2002;36:3855-3863. DOI: 10.1021/es015757k.
  • [12] Rosińska A, Dąbrowska L. Concentrations of PCBs and heavy metals in water of the dam reservoir and use of pre-hydrolyzed coagulants to micropollutants removal from surface water. Desalin Water Treat. 2013;51:1657-1663. DOI: 10.1080/19443994.2012.695045.
  • [13] Sapota G. Polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in seawater of the Southern Baltic Sea. Desalination. 2004;162:153-157. DOI: 10.1016/S0011-9164(04)00038-4.
  • [14] Huerta-Fontela MG, Galcera MT, Ventura F. Stimulatory drugs of abuse in surface waters and their removal in a conventional drinking water treatment plant. Environ Sci Technol. 2008;42:6809-6816. DOI: 10.1021/es800768h.
  • [15] Carballa M, Omil F, Lema JM. Removal of pharmaceuticals and personal care products (PPCPs) from municipal wastewaters by physico-chemical processes. Electron J Environ Agric Food Chem. 2003;2:309-313. www.researchgate.net/publication/228362352_Removal_of_pharmaceuticals_andpersonal_care_products_PPCPS_from_municipal_wastewaters_by_physicochemical_processes.
  • [16] Bundy MM, Doucette WJ, McNeill L, Ericson JF. Removal of pharmaceutical and related compounds by a bench-scale drinking water treatment system. J Water Supply Res T. 2007;56:105-115. DOI: 10.21/aqua.2007.091.
  • [17] Le-Minh N, Khan SJ, Drewes JE, Stuetz RM. Fate of antibiotics Turing municipal water recycling treatment processes. Water Res. 2010;44(15):4295-4323. DOI: 10.1016/j.watres.2010.06.020.
  • [18] Yu, Y, Zhuang YY, Li Y, Qiu MQ. Effect of dye structure on the interaction between organic flocculant PAN-DCD and dye. Ind Eng Chem Res. 2002;41:1589-1596. DOI: 10.1021/ie010745t.
  • [19] Liyan S, Youcai Z, Weimin S, Ziyang L. Hydrophobic organic chemicals (HOCs) removal from biologically treated landfill leachate by powder-activated carbon (PAC), granularactivated carbon (GAC) and biomimetic fat cell (BFC). J Hazard Mater. 2009;163:1084-1089. DOI: 10.1016/j.jhazmat.2008.07.075.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b529c190-b45a-4417-b57e-01bd8700982c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.