PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metal removal from complex copper containing effluents by waste biomass of Saccharomyces cerevisiae

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Saccharomyces cerevisiae, waste biomass originated from beer fermentation industry, was used to remove metal ions from four copper-containing synthetic effluents: Cu-Fe, Cu-Fe-Ni, Cu-Fe-Zn, and Cu-Fe-Ni-Zn. The characterization of the biomass surface was investigated by Scanning Electron Microscopy and Fourier-transform Infrared Spectroscopy. The adsorption behavior of Saccharomyces cerevisiae for copper, iron, nickel and zinc ions in aqueous solution was studied as a function of pH, initial copper concentration, equilibrium time, and temperature. Langmiur, Freundlich, Temkin and Dubinin-Radushkevich equilibrium models have been assessed to describe the experimental sorption equilibrium profile, while pseudo-first order, pseudo-second order, Elovich and the intra-particle diffusion models were applied to describe experimental kinetics data. Maximum sorption capacities have been calculated by means of Langmuir equilibrium model and mean free sorption energies through the Dubinin-Radushkevich model. Thermodynamic analysis results showed that the adsorption of copper, iron and zinc was spontaneous and endothermic in nature, while of nickel exothermic. Saccharomyces cerevisiae can be successfully applied for complex wastewater treatment.
Rocznik
Strony
415--435
Opis fizyczny
Bibliogr. 37 poz., rys., wykr., tab., fot.
Twórcy
  • Joint Institute for Nuclear Research, Joliot-Curie Str., 6, 1419890 Dubna, Russia
  • Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, 30 Reactorului Str. MG-6, Bucharest - Magurele, Romania
  • Joint Institute for Nuclear Research, Joliot-Curie Str., 6, 1419890 Dubna, Russia
  • Joint Institute for Nuclear Research, Joliot-Curie Str., 6, 1419890 Dubna, Russia
  • Joint Institute for Nuclear Research, Joliot-Curie Str., 6, 1419890 Dubna, Russia
  • Joint Institute for Nuclear Research, Joliot-Curie Str., 6, 1419890 Dubna, Russia
  • A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova Str., 28, 119991, Moscow, Russia
Bibliografia
  • [1] do Nascimento JM, de Oliveir JD, Rizzo ACL, Leite SGF. Biosorption Cu(II) by the yeast Saccharomyces cerevisiae. Biotechnol Rep. 2019;21:e00315. DOI: 10.1016/j.btre.2019.e00315.
  • [2] Demiral H, Güngor C. Adsorption of copper(II) from aqueous solutions on activated carbon prepared from grape bagasse. J Clean Prod. 2016;124:103-13. DOI: 10.1016/j.jclepro.2016.02.084.
  • [3] Yargıç AS, Yarbay Sahin RZ, Ozbay N, Onal E. Assessment of toxic copper(II) biosorption from aqueous solution by chemically-treated tomato waste. J Clean Prod. 2015;88:152-9. DOI: 10.1016/j.jclepro.2014.05.087.
  • [4] Moreira VR, Lebron YAR, Freire SJ, Santos LVS, Palladino F, Jaco RS. Biosorption of copper ions from aqueous solution using Chlorella pyrenoidosa: Optimization, equilibrium and kinetics studies. Microchem J. 2019;145:119-29. DOI: 10.1016/j.microc.2018.10.027.
  • [5] Peng Q, Liu Y, Zeng G, Xu W, Yang C, Zhang J. Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution. J Hazard Mater. 2010;177:676-82. DOI: 10.1016/j.jhazmat.2009.12.084.
  • [6] Zinicovscaia I, Yushin N, Abdusamadzoda D, Grozdov D, Shvetsova M. Efficient removal of metals from synthetic and real galvanic zinc-containing effluents by brewer’s yeast Saccharomyces cerevisiae. Materials. 2020;13:3624. DOI: 10.3390/ma13163624.
  • [7] Zinicovscaia I, Grozdov D, Yushin N, Abdusamadzoda D, Gundorina S, Rodlovskaya E, et al. Metal removal from chromium containing synthetic effluents by Saccharomyces cerevisiae. Desalin Water Treat. 2020;178:254-70. DOI: 10.5004/dwt.2020.24987.
  • [8] De Rossi A, Rigon MR, Zaparoli M, Braido RD, Colla LM, Dotto GL, et al. Chromium(VI) biosorption by Saccharomyces cerevisiae subjected to chemical and thermal treatments. Environ Sci Pollut Res Int. 2018;25:19179-86. DOI: 10.1007/s11356-018-2377-4.
  • [9] Wang J, Chen C. Biosorption of heavy metals by Saccharomyces cerevisiae: A review. Biotechnol Adv. 2006;24:427-51. DOI: 10.1016/j.biotechadv.2006.03.001.
  • [10] Raffar NIA, Rahman NNAA, Alrozi R, Senusi F, Chang SH. Potential immobilized Saccharomyces cerevisiae as heavy metal removal. AIP Conf Proc. 2015;1660:070093. DOI: 10.1063/1.4915810.
  • [11] Machado MD, Janssens S, Soares HMVM, Soares EV. Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: advantages of using dead biomass. J Appl Microbiol. 2009;106:1792-804. DOI: 10.1111/j.1365-2672.2009.04170.x.
  • [12] Avery SV, Tobin JM. Mechanisms of strontium uptake by laboratory and brewing strains of Saccharomyces cerevisiae. Appl Environ Microbiol. 1992;58(12):3883-9.
  • [13] Brady D, Duncan JR. Binding of heavy metals by the cell walls of Saccharomyces cerevisiae. Enzyme Microb. Technol. 1994;16:633-8. DOI: 10.1016/0141-0229(94)90131-7.
  • [14] Machado MD, Soares HMVM, Soares EV. Removal of chromium, copper, and nickel from an electroplating effluent using a flocculent brewer’s yeast strain of Saccharomyces cerevisiae. Water Air Soil Pollut. 2010;212:199-204. DOI: 10.1007/s11270-010-0332-1.
  • [15] Frontasyeva MV. Neutron activation analysis for the life sciences. Phys Part Nucl. 2011;42:332-78. DOI: 10.1134/S1063779611020043.
  • [16] Hlihor RM, Diaconu M, Fertu D, Chelaru C, Sandu I, Tavares T. Bioremediation of Cr(VI) polluted wastewaters by sorption on heat inactivated Saccharomyces cerevisiae biomass. Int J Environ Res. 2013;7(3):581-94. DOI: 10.22059/ijer.2013.638.
  • [17] Oves M, Saghir Khan M, Zaidi A. Biosorption of heavy metals by Bacillus thuringiensis strain OSM29 originating from industrial effluent contaminated north Indian soil. Saudi J Biol Sci. 2013;20:121-9. DOI: 10.1016/j.sjbs.2012.11.006.
  • [18] Al-Homaidan AA, Al-Houri HJ, Al-Hazzani AA, Elgaaly G, Moubayed NMS. Adsorptive removal of cadmium ions by Spirulina platensis dry biomass. Saudi J Biol Sci. 2015;22:795-800. DOI: 10.1016/j.sjbs.2015.06.010.
  • [19] Rajfur M, Kłos A, Kříž J. Translocation of cations during sorption of copper in the system solution - algae (Spirogyra sp.). Ecol Chem Eng S. 2014;21(3):425-33. DOI: 10.2478/eces-2014-0031.
  • [20] Yildiz S. Kinetic and isotherm analysis of Cu(II) adsorption onto almond shell (Prunus dulcis). Ecol Chem Eng S. 2017;24(1):87-106. DOI: 10.1515/eces-2017-0007.
  • [21] Padmavathy V, Vasudevan P, Dhingra SC. Biosorption of nickel(II) ions on Baker’s yeast. Process Biochem. 2003;38:1389-95. DOI: 10.1016/S0032-9592(02)00168-1.
  • [22] Basak G, Preethy Chandran LV, Das N. Removal of Zn(II) from electroplating effluent using yeast biofilm formed on gravels: batch and column studies. J Environ Health Sci Eng. 2014;12:8. DOI: 10.1186/2052-336X-12-8.
  • [23] Gerlach M, Trautwein AX, Zecca L, Youdim MBH, Riederer P. Moessbauer spectroscopic studies of purified neuromelanin isolated from the substantia nigra. J Neurochem. 1995;65:923-6. DOI: 10.1046/j.1471-4159.1995.65020923.x.
  • [24] Sag Y, Kutsal T. Fully competitive biosorption of chromium(VI) and iron(III) ions from binary metal mixtures by R. arrhizus: Use of the competitive Langmuir model. Proc Biochem. 1996;31:573-85. DOI: 10.1016/S0032-9592(96)00003-9.
  • [25] Aksu Z, Gulen H. Binary biosorption of iron(III) and iron(III)-cyanide complex ions on Rhizopus arrhizus: modelling of synergistic interaction. Process Biochem. 2002;38:161-73. DOI: 10.1016/S0032-9592(02)00062-6.
  • [26] Sag Y, Kutsal T. The simultaneous biosorption of Cr(VI), Fe(III) and Cu(II) on Rhizopus arrhizus. Proc Biochem. 1998;33:571-9. DOI: 10.1016/S0032-9592(98)00020-X.
  • [27] Han R, Li H, Li Y, Zhang J, Xiao H, Shi J. Biosorption of copper and lead ions by waste beer yeast. J Hazard Mater. 2006;137:1569-76. DOI: 10.1016/j.jhazmat.2006.04.045.
  • [28] Albadarin AB, Al-Muhtase AH, Al-laqtah NA, Walker GM, Allen SJ, Ahmad MNM. Biosorption of toxic chromium from aqueous phase by lignin: mechanism, effect of other metal ions and salts. Chem Eng J. 2011;169:20-30. DOI: 10.1016/j.cej.2011.02.044.
  • [29] Ahmad MA, Ahmad Puad NA, Bello OS. Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation. Water Res Ind. 2014;6:18-35. DOI: 10.1016/j.wri.2014.06.002.
  • [30] Kula I, Ugurlu M, Karaoglu H, Celik A. Adsorption of Cd(II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation. Bioresource Technol. 2008;99:492-501. DOI: 10.1016/j.biortech.2007.01.015.
  • [31] Riahi K, Chaabane S, Thayer BB. A kinetic modeling study of phosphate adsorption onto Phoenix dactylifera L. date palm fibers in batch mode. J Saudi Chem Soc. 2017;2:143-52. DOI: 10.1016/j.jscs.2013.11.007.
  • [32] Wu FC, Tseng RL, Juang RS. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem Eng J. 2009;150:366-73. DOI: 10.1016/j.cej.2009.01.014.
  • [33] Saini AS, Melo JS. Biosorption of uranium by melanin: Kinetic, equilibrium and thermodynamic studies. Bioresource Technol. 2013;149:155-62. DOI: 10.1016/j.biortech.2013.09.034.
  • [34] Zinicovscaia I, Yushin N, Shvetsova M, Frontasyeva M. Zinc removal from model solution and wastewater by Arthrospira (Spirulina) platensis biomass. Int J Phytoremediation. 2018;20:901-8. DOI: 10.1080/15226514.2018.1448358.
  • [35] Xu L, Zheng X, Cui H, Zhu Z, Liang J, Zhou J. Equilibrium, kinetic, and thermodynamic studies on the adsorption of cadmium from aqueous solution by modified biomass ash. Bioinorg Chem Appl. 2017;3695604. DOI: 10.1155/2017/3695604.
  • [36] Pahlavanzadeh H, Keshtkar AR, Safdari J, Abadi Z. Biosorption of nickel(II) from aqueous solution by brown algae: equilibrium, dynamic and thermodynamic studies. J Hazard Mater. 2010;304-10. DOI: 10.1016/j.jhazmat.2009.10.004.
  • [37] Chojnacka K, Chojnacki A, Górecka H. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere. 2005;75-84. DOI: 10.1016/j.chemosphere.2004.10.005.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b4ad93dc-bbe3-4521-9e43-b1324caf5f35
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.