Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The area of application of contactless measuring systems has been rapidly growing over the past two decades. Development of contactless measuring methods can also be observed in Coordinate Metrology. Due to the growing number of contactless systems found in industry, there is also a growing interest in the issue of their accuracy among research centres. The interesting new solution which can be applied in contactless measurements is the usage of fiducial markers in dimensional metrology. In this paper, the authors present a simple and cheap optical system and try to assess its accuracy. A calibration process of a reference plate is described as well. Research was conducted for basic measuring tasks met in Coordinate Measuring Technique. Markers are attached to the z-axis ram of Coordinate Measuring Machine which is used as a reference system. The article presents the results obtained for basic measuring tasks, which can be a basis for further research aimed at improving the accuracy of measurements performed using fiducial markers.
Wydawca
Rocznik
Tom
Strony
213--219
Opis fizyczny
Bibliogr. 22 poz., fig., tab.
Twórcy
autor
- Coordinate Metrology Laboratory, Mechanical Engineering Faculty, al. Jana Pawła II 37, 31-864 Kraków, Poland
autor
- Coordinate Metrology Laboratory, Mechanical Engineering Faculty, al. Jana Pawła II 37, 31-864 Kraków, Poland
autor
- Coordinate Metrology Laboratory, Mechanical Engineering Faculty, al. Jana Pawła II 37, 31-864 Kraków, Poland
autor
- Coordinate Metrology Laboratory, Mechanical Engineering Faculty, al. Jana Pawła II 37, 31-864 Kraków, Poland
autor
- Coordinate Metrology Laboratory, Mechanical Engineering Faculty, al. Jana Pawła II 37, 31-864 Kraków, Poland
Bibliografia
- 1. Harding K. (ed.): Handbook of optical dimensional metrology, CRC Press, 2013.
- 2. Sapietová, A., Štalmach, O., Sága, M., Stančeková, D., and Gajdoš, L. Realization and verification of data conversion from laser scanner to FEM. Advances in Science and Technology Research Journal 14(1), 2020, 69-74.
- 3. Hocken R. J., Pereira P. H. Coordinate measuring machines and systems, Second Edition. CRC Press, 2012.
- 4. Christoph R. and Neumann H.J. Multisensor-Koordinatenmesstechnik, Süddeutscher Verlag, 2013.
- 5. Hofmann D. Vorlesung optische koordinatenmesstechnik, qualitätssicherung und qualitätsmesstechnik, Steinbeis Transferzentrum, 2011.
- 6. Koteras, R.G., Wieczorowski, M., and Znaniecki, P. Acceptance and reverification of CMM in industrial conditions. Advances in Science and Technology Research Journal 12(1), 2018, 80-88.
- 7. Weckenmann A. and Bernstein J. Measurement uncertainty evaluation of opticalmulti-sensor-measurements, Measurement, 45, 2012.
- 8. Weckenmann A., Kraemer P., and Hoffmann J. Manufacturing metrology – State of the art and prospects. Proceedings of 9th IMEKO TC14: International Symposium on Measurement and Quality Control (9th ISMQC), Chennai, India 2007.
- 9. Cucci D.A. Accurate optical target pose determination for applications in aerial photogrammetry. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 3(3), 2016.
- 10. Górski F., Wichniarek R., Kuczko W., Zawadzki P., Buń P. Influence of marker arrangment on positioning accuracy of objects in a virtual environment. Advances in Science and Technology Research Journal, 9(28), 2015, 112-119.
- 11. Górski F., Wichniarek R., Kuczko W., Zawadzki P., Buń P. Dimensional accuracy of parts manufactured by 3D printing for interaction in virtual reality. Advances in Science and Technology Research Journal, 11(4), 2017, 279-285.
- 12. Koeda M., Yano D., Shintaku N., Onishi K., Noborio H. Development of wireless surgical knife attachment with proximity indicators using ArUco marker. Lecture Notes in Computer Science: Human-Computer Interaction, 2018, 14-26.
- 13. Xing B., Zhu Q., Pan F., Feng X. Marker-based multi-sensor fusion indoor localization system for micro air vehicles. Sensors, 18(6), 2018, 1706.
- 14. Szymczyk T., Montusiewicz J., Gutek D. navigation in large-format buildings based on RFID sensors and QR and AR markers. Advances in Science and Technology Research Journal, 10(31), 2016, 263-273.
- 15. Xavier R., Silva B., Goncalves L. Accuracy analysis of augmented reality markers for visual mapping and localization. Proceedings of Workshop of Computer Vision (WVC), 2017, Natal, Brazil.
- 16. Abawi D.F., Bienwald J., Dorner R. Accuracy in optical tracking with fiducial markers: an accuracy function for ARToolKit. Proceedings of the Third IEEE and ACM International Symposium on Mixed and Augmented Reality, 2014, Arlington, USA.
- 17. Garrido-Jurado S., Munoz-Salinas R., MadridCuevas F., Marin-Jimenez M. Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognition 47(6), 2014, 2280-2292.
- 18. https://docs.opencv.org/trunk/d4/d94/tutorial_ camera_calibration.html
- 19. https://www.zeiss.pl/metrologia/produkty/brochures.html?catalog=O-INSPECT
- 20. ISO 10360-2:2009: Geometrical product specifications (GPS) - Acceptance and reverification tests for coordinate measuring machines (CMM) - Part 2: CMMs used for measuring linear dimensions, 2009.
- 21. ISO 10360-5:2010: Geometrical product specifications (GPS) - Acceptance and reverification tests for coordinate measuring machines (CMM) - Part 5: CMMs using single and multiple stylus contacting probing systems, Second edition, 2010.
- 22. Kupiec R., Dubno R., Sładek J. Accuracy assessment of a laser tracker system. Proceeding of the 11th IMEKO TC14: International Symposium on Measurement and Quality Control (ISMQC 2013), September 11-13, 2013, Cracow, Poland.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b33d00b1-5738-4f11-87bd-38ab3b0830f5