PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A case study of relationship between GPS PWV and solar Variability during the declining phase of solar cycle 23

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Water vapor plays an important role in the global climate system. A clear relationship between water vapor and solar activity can explain some physical mechanisms of how solar activity influences terrestrial weather/climate changes. To gain insight of this possible relationship, the atmospheric precipitable water vapor (PWV) as the terrestrial climate response was observed by ground-based GPS receivers over the Antarctic stations. The PWV changes analyzed for the period from 2003 to 2008 coincided with the declining phase of solar cycle 23 exhibited following the solar variability trend. Their relationship showed moderate to strong correlation with 0.45 < R2 < 0.93 (p < 0.01), on a monthly basis. This possible relationship suggests that when the solar-coupled geomagnetic activity is stronger, the Earth’s surface will be warmer, as indicated by electrical connection between ionosphere and troposphere.
Czasopismo
Rocznik
Strony
220--240
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • Institute of Space Science (ANGKASA), Universiti Kebangsaan Malaysia, Bangi, Selangor Darul Ehsan, Malaysia
autor
  • Department of Physics and Astronomy, University of Canterbury, Christchurch, New Zealand
Bibliografia
  • 1.Altamimi, Z., P. Sillard, and C. Boucher (2002), ITRF2000: A new release of the international terrestrial reference frame for earth science applications, J. Geophys. Res. 107, B10, 2214, DOI: 10.1029/2001JB000561.
  • 2.Boehm, J., B. Werl, and H. Schuh (2006), Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data, J. Geophys. Res. 111, B2, B02406, DOI: 10.1029/2005JB003629.
  • 3.Cliver, E.W., V. Boriakoff, and J. Feynman (1998), Solar variability and climate change: Geomagnetic aa index and global surface temperature, Geophys. Res. Lett. 25, 7, 1035-1038, DOI: 10.1029/98GL00499.
  • 4.Crary, F.J., J.T. Clarke, M.K. Dougherty, P.G. Hanlon, K.C. Hansen, J.T. Steinberg, B.L. Barraclough, A.J. Coates, J.-C. Gérard, D. Grodent, W.S. Kurth, D.G. Mitchell, A.M. Rymer, and D.T. Young (2005), Solar wind dynamic pressure and electric field as the main factors controlling Saturn’s aurorae, Nature 433, 7027, 720-722, DOI: 10.1038/nature03333.
  • 5.Friis-Christensen, E., and K. Lassen (1991), Length of the solar cycle: An indicator of solar activity closely associated with climate, Science 254, 5032, 698-700, DOI: 10.1126/science.254.5032.698.
  • 6.Gendt, G., G. Dick, C. Reigber, M. Tomassini, Y. Liu, and M. Ramatschi (2004), Near real time GPS water vapor monitoring for numerical weather prediction in Germany, J. Meteorol. Soc. Jpn. 82, 1B, 361-370, DOI: 10.2151/jmsj.2004.361.
  • 7.Gradinarsky, L.P., J.M. Johansson, H.R. Bouma, H.-G. Scherneck, and G. Elgered (2002), Climate monitoring using GPS, Phys. Chem. Earth 27, 4-5, 335- 340, DOI: 10.1016/S1474-7065(02)00009-8.
  • 8.Hofmann-Wellenhof, B., H. Lichtenegger, and J. Collins (2001), Global Positioning System: Theory and Practice, 5th revised ed., Springer Verlag, Vienna, 382 pp., DOI: 10.1007/978-3-7091-6199-9.
  • 9.Hudson, S.R., and R.E. Brandt (2005), A look at the surface-based temperature inversion on the Antarctic Plateau, J. Climate 18, 11, 1673-1696, DOI: 10.1175/JCLI3360.1.
  • 10.IPCC (2007), Summary for policymakers. In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (eds.), Climate Change 2007 – The Physical Science Basis Working Group I Contribution to the Fourth Assessment Report of the IPCC, Cambridge University Press, Cambridge.
  • 11.Kuo, Y.-H., S.V. Sokolovskiy, R.A. Anthes, and F. Vandenberghe (2000), Assimilation of GPS radio occulation data for numerical weather prediction, Terr. Atmos. Ocean. Sci. 11, 1, 157-186.
  • 12.Labitzke, K., and K. Matthes (2003), Eleven-year solar cycle variations in the atmosphere: observations, mechanisms and models, The Holocene 13, 3, 311-317, DOI: 10.1191/0959683603hl623rp.
  • 13.Lyon, J.G. (2000), The solar wind-magnetosphere-ionosphere system, Science 288, 5473, 1987-1991, DOI: 10.1126/science.288.5473.1987.
  • 14.Markson, R. (1978), Solar modulation of atmospheric electrification and possible implications for the Sun-weather relationship, Nature 273, 5658, 103-109, DOI: 10.1038/273103a0.
  • 15.Marsh, N., and H. Svensmark (2003), Solar influence on Earth’s climate, Space Sci. Rev. 107, 1-2, 317-325, DOI: 10.1023/A:1025573117134.
  • 16.Oliver, W.L., S. Fukao, T. Takami, M. Yamamoto, T. Tsuda, T. Nakamura, and S. Kato (1990), Thermospheric meridional winds measured by the middle and upper atmosphere radar, J. Geophys. Res. 95, A6, 7683-7692, DOI: 10.1029/JA095iA06p07683.
  • 17.Pittock, A.B. (1978), A critical look at long-term Sun-weather relationships, Rev. Geophys. 16, 3, 400-420, DOI: 10.1029/RG016i003p00400.
  • 18.Richardson, J.D., C. Wang, J.C. Kasper, and Y. Liu (2005), Propagation of the October/ Novermber 2003 CMEs through the heliosphere, Geophys. Res. Lett. 32, 3, L03S03, DOI: 10.1029/2004GL020679.
  • 19.Rycroft, M.J., S. Israelsson, and C. Price (2000), The global atmospheric electric circuit, solar activity and climate change, J. Atmos. Sol.-Terr. Phys. 62, 17-18, 1563-1576, DOI: 10.1016/S1364-6826(00)00112-7.
  • 20.Saastamoinen, J. (1972), Introduction to practical computation of astronomical refraction, Bull. Geod. 106, 1, 383-397, DOI: 10.1007/BF02522047.
  • 21.Suparta, W. (2010), Using a Global Positioning System to estimate precipitable water vapor in Antarctica, Polar Geography 33, 1-2, 63-79, DOI: 10.1080/ 1088937X.2010.498683.
  • 22.Suparta, W., Z.A.A. Rashid, M.A.M. Ali, B. Yatim, and G.J. Fraser (2008), Observations of Antarctic precipitable water vapor and its response to the solar activity based on GPS sensing, J. Atmos. Sol.-Terr. Phys. 70, 11-12, 1419-1447, DOI: 10.1016/j.jastp.2008.04.006.
  • 23.Suparta, W., B. Yatim, and M.A.M. Ali (2010), Solar forcing on Antarctic terrestrial climate: A study by means of GPS observations, Acta Geophys. 58, 2, 374-391, DOI: 10.2478/s11600-009-0035-4.
  • 24.Vömel, H., S.J. Oltmans, D.J. Hofmann, T. Deshler, and J.M. Rosen (1995), The evolution of the dehydration in the Antarctic stratospheric vortex, J. Geophys. Res. 100, D7, 13919-13926, DOI: 10.1029/95JD01000.
  • 25.Webb, D.F. (1995), Solar and geomagnetic disturbances during the declining phase of recent solar cycles, Adv. Space Res. 16, 9, 57-69, DOI: 10.1016/0273-1177(95)00315-6.
  • 26.Zanchettin, D., A. Rubino, P. Traverso, and M. Tomasino (2008), Impact of variations in solar activity on hydrological decadal patterns in northern Italy, J. Geophys. Res. 113, D12, D12102, DOI: 10.1029/2007JD009157.
  • 27.Zumberge, J.F., M.B. Heflin, D.C. Jefferson, M.M. Watkins, and F.H. Webb (1997), Precise point positioning for the efficient and robust analysis of GPS data from large networks, J. Geophys. Res. 102, B3, 5005-5017, DOI: 10.1029/96JB03860.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b18b6207-3c40-4133-9f88-379a4ca91b04
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.