PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biomaterials for the replacement and regeneration of articular cartilage

Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Chrząstka stawowa jest tkanką łączną, która pokrywa powierzchnie stykających się ze sobą kości w stawach. Zbudowana jest miedzy innymi z wody, komórek chrzęstnych zwanych chondrocytami oraz substancji międzykomórkowej, często określanej mianem macierzy. Macierz stanowią nanowłókna kolagenowe, proteoglikany i białka niekolagenowe. Dzięki takiej budowie, chrząstka stawowa posiada zdolność pochłaniania i rozkładu sił działających w stawie, oraz zapewnia niemal beztarciowy ruch powierzchni stawowych. W wyniku urazów i chorób zwyrodnieniowych stawów chrząstka traci powyższe właściwości. W przeciwieństwie do tkanki kostnej chrząstka nie ma możliwości regeneracji samoistnej; raz uszkodzona może tylko wypełnić się blizną łącznotkankową. Szacuje się, że około15% ludzi na świecie cierpi z powodu chorób chrząstki stawowej. Liczbę osób w Polsce dotkniętych chorobami chrząstki ocenia się na około 5 milionów. Objawami klinicznymi tych chorób są ból i ograniczenie funkcji stawu. Do obecnie stosowanych metod leczenia chorób chrząstki należą: leczenie farmakologiczne, przeszczepy własnej chrząstki (np. z powierzchni nieobciążanej), przeszczepy allogeniczne (pobrane ze zwłok), przeszczepy okostnej i/lub komórek szpiku oraz techniki stymulujące powstawanie blizny chrząstkopodobnej: nawiercanie i mikrozłamania. Przy większych ubytkach chrząstki konieczne jest stosowanie alloplastyki stawu. Większość stosowanych metod pomimo zaawansowania technicznego ma znikomą skuteczność terapeutyczną i ograniczone wskazania. Z tego powodu konieczne jest poszukiwanie nowych rozwiązań leczenia chorób chrząstki. Dzięki znaczącym postępom w inżynierii materiałowej i nanotechnologii opracowywane są nowe, doskonalsze rozwiązania materiałowe do zastosowań w medycynie. Powstają nowe biomateriały - substancje naturalne lub syntetyczne, które służą do wytworzenia elementów uzupełniających lub zastępujących tkanki i/lub narządy człowieka. Używane są między innymi do wytwarzania zespoleń kostnych, sztucznych stawów, naczyń krwionośnych oraz produktów inżynierii tkankowej. W związku z zastosowaniem biomateriałów w organizmie ludzkim powinny one charakteryzować się wysoką biozgodnością, świetnymi właściwościami mechanicznymi oraz budowa zbliżonej do zastępowanych tkanek i narządów. W zależności od strategii leczenia wymaga się od nich także wysokiej odporności chemicznej, bądź przeciwnie, dużej reaktywności, aż do resorpcji w środowisku fizjologicznym. W świetle istniejących osiągnięć w zakresie biomateriałów stosowanych w leczeniu chrząstki stawowej w niniejszej pracy przedstawiono oryginalne rozwiązania materiałowe, które mogą wspomagać zastępowanie ubytków tkanki chrzęstnej oraz regenerację i odbudowę uszkodzonej tkanki chrzęstnej. Opracowanie nowych rozwiązań materiałowych poprzedzone jest w pracy rozważaniami poznawczymi na temat potencjalnych mechanizmów uszkodzeń sztucznych stawów człowieka. Dokonano analizy uszkodzeń implantów i ich przyczyn na postawie symulacji numerycznych oraz badań eksperymentalnych. Analizy numeryczne wykazały znaczący wpływ materiału i geometrii implantów na stań naprężeń i odkształceń w sztucznym stawie barkowym. Wykazano, że wartości naprężeń w implantach często przekraczają dopuszczalne naprężenia do stosowanych materiałów, co może prowadzić do ich uszkodzeń, np. zużycia materiału. Występowanie mechanizmów niszczenia materiałów implantacyjnych tj. zużycie, korozja, pękanie i utlenianie, potwierdzone zostało w szczegółowych badaniach protez usuniętych w operacjach rewizyjnych stawów człowieka. Dodatkowe badania na opracowanym stanowisku do testów trybologicznych endoprotez stawu barkowego pozwoliły wyznaczyć wpływ geometrii implantu i naprężeń kontaktowych na zużycie materiału polimerowego. Jednym z proponowanych oryginalnych rozwiązań materiałowych jest opracowanie nowego biozgodnego materiału na bazie hydrożelu alkoholu poliwinylowego z zastosowaniem metody termicznej (cyklicznego zamrażania i odmrażania) oraz porowatego tytanu (porowatość otwarta 75%) otrzymanego metodą metalurgii proszków. Materiał hydrożelowy stanowić będzie "sztuczną chrząstkę" implantowaną w miejscu ubytku chrząstki naturalnej. Częściowa infiltracja porowatego tytanu hydrożelem, pozwoli na mocowanie "sztucznej chrząstki" w miejscu ubytku poprzez wrastanie tkanki kostnej w porowatą strukturę metalu. Dzięki zastosowaniu takiej metody uzyskano prototyp implantu chrząstki składający się z warstwy hydrożelu i porowatego tytanu. Przeprowadzone badania eksperymentalne oraz analizy numeryczne wykazały, że opracowany implant charakteryzuje się korzystniejszymi właściwościami trybologicznymi oraz mechanicznymi w porównaniu z obecnie stosowanymi rozwiązaniami. Właściwości mechaniczne i strukturalne otrzymanego hydrożelu są zbliżone do właściwości naturalnej chrząstki. Należy przypuszczać, że dzięki tym cechom nowy implant na długo przywróci funkcję chrząstki stawowej. Drugi wątek badań aplikacyjnych dotyczy obiecującej metody regeneracji chrząstki poprzez zastosowanie inżynierii tkankowej. Metoda ta zakłada wykorzystanie komórek pacjenta, które po wyizolowaniu i namnożeniu są hodowane na trójwymiarowym rusztowaniu i wraz z nim wszczepiane w miejsce ubytku tkanki. Po pewnym czasie komórki te tworzą nową tkankę a rusztowanie ulega degradacji. W pracy opracowano prototyp nowego bioaktywnego rusztowania dla komórek, który ma za zadanie wspomagać proces regeneracji chrząstki stawowej. Oryginalność proponowanego rozwiązania przejawia się w jednoczesnym zastosowaniu mikro i nano włókien do wytworzenia hybrydowej konstrukcji rusztowania. Hybrydowe rusztowanie powstaje w procesie powstałym z połączenia metody szybkiego prototypowania i elektroprzędzenia. Do wytworzenia rusztowania zastosowano materiały polimerowe o wysokiej czystości i biozgodności tj. polimer kwasu mlekowego oraz polikaprolakton. Wstępne badania biologiczne na komórkach mezenchymalnych szpiku kostnego potwierdzają biozgodność i bioaktywność opracowanego rusztowania. Podsumowując, przedstawiona praca przedstawia stan obecny badań w zakresie biomateriałów stosowanych w leczeniu uszkodzeń i chorób chrząstki stawowej oraz dwa nowe rozwiązania: sztuczną chrząstkę i hybrydowe rusztowanie. Mimo zadowalających wyników badań zastosowanie powyższych rozwiązań w praktyce klinicznej nadal wymaga szeregu badań przedklinicznych, w tym badań biologicznych na komórkach oraz badań na zwierzętach.
EN
The aim of the monograph is to develop novel biomaterials and scaffolds wich may by used for the repair of cartilage damage arising from sports or occupational traumas or to overcome degenerative osteoarthritis. Two new engineering solutions are proposed: (1) an artificial cartilage consisting of nondegradable, modified Polyvinyl Alcohol (PVA) hydrogel, infiltrated into porous titanium, to replace the function of natural cartilage and stop further growth of cartilage defects; (2) a bioactive degradable hybrid 3D tissue engineered product (TEP) to support self regeneration to overcome osteochondral defects. The results of numerical and experimental evaluation of the both solutions lead to conclusion that the artificial cartilage as well as hybrid scaffold show high potential to be used for the replacement and regeneration of the articular cartilage.
Rocznik
Tom
Strony
3--134
Opis fizyczny
Bibliogr. 367 poz., tab., rys., wykr.
Twórcy
  • Wydział Inżynierii Materiałowej, Politechnika Warszawska
Bibliografia
  • [1] ABAQUS v 6.2. Help Manuals. Hibbitt. Karlsson & Sorensen, USA, 1994.
  • [2] Adachi T, Osako Y, Tanaka M, Hojo M, Hollister SJ. Framework for optimal design of porous scaffold microstructure by computational simulation of bone regeneration. Biomaterials. 2006 Jul; 27(21): 3964-72.
  • [3] Afoke NYP, Byers PD, Hutton WC. Contact pressures in the human hip joint. J Bone Joint Surg, 1987; 69: 536-41.
  • [4] Agrawal CM, Ray RB. Biodegradable polymeric scaffolds for musculosceletal tissue engineering. J. Biomed. Mater Res 2001; 55: 141-150.
  • [5] Ahmed TA, Hincke MT. Strategies for Articular Cartilage Lesion Repair and Functional Restoration. Tissue Eng Part B Rev. 2010 Jan 30. [Epub ahead of print].
  • [6] Andreykiv A, Prendergast P, van Keulen F, Swieszkowski W. Modelling of bone ingrowth using poro-elastic theory. Materials of International Symposium: Actual problems of materials mechanics: physicochemical aspects and diagnostics of materials properties, Lviv, Ukraine, 4-7 June 2001: 70-71.
  • [7] Andreykiv A, Prendergast PJ, van Keulen F, Swieszkowski W. Bone ingrowth simulation of a glenoid component with porous tantalum backing. Proceed. 4th Meeting of the International Shoulder Group, Cleveland, USA, 17-18 June 2002a: 56-59.
  • [8] Andreykiv A, Prendergast PJ, van Keulen F, Swieszkowski W. Modelling of bone ingrowth into a porous tantalum mesh of a glenoid component. Acta of Bioengineering and Biomechanics, 2002b; Vol. 4, Supl. 1: 337.
  • [9] Andreykiv A, Prendergast PJ, van Keulen F, Swieszkowski W, Rozing P. Bone in growth simulation for a concept glenoid component design. J. Biomechanics, 2005; 38(5): 1023-1033.
  • [10] Ang KC, Leong KF, Chua CK, Chandrasckaran M. Compressive properties and degradability of polycaprolactone/hydroxyapatite composites under accelcrated hydrolytic degradation. J Biomed Mater Res 2007; 80A: 655-660.
  • [11] Anglin C, Wyss UP, Nyffeler RW, Gerber C. Loosening performance of cemented glenoid prosthesis design pairs. Clin Biomech, 2001; 16(2): 144-150.
  • [12] Anglin C, Wyss UP, Pichora DR. Glenohumeral contact forces. Proc. Inst Mech. Engrs. Part H, Journal of Engineering in Medicine, 2000, 214(H6), 637-644.
  • [13] Anseth KS, Bowman CN, Brannon-Peppas L. Mechanical properties of hydrogels and their experimental determination. Biomaterials, 1996; 17: 1647-1657.
  • [14] Antuna SA, Sperling JW, Cofield RH, Rowland CM. Glenoid revision surgery after total shoulder arthroplasty. J. Shoulder Elbow Surg., 2001; 10(3): 217-224.
  • [15] Archibeck MJ, Berger RA, Jacobs JJ, Quigley LR, Gitelis S, Rosenberg AG, Galante JO. Second-generation cementless total hip arthroplasty. Eight to eleven-year results. Journal of Bone and Joint Surgery, 2001, 83A(11), 1666-73.
  • [16] Ariga O, Kato M, Sano T, Nakazawa Y, Sano Y. Mechanical and kinetic properties of PVA hydrogel immobilizing - galactosidase. J. Ferment. Bioeng. 1993; 76(3): 203-206.
  • [17] Arola D, Stoffel K A, Yang DT. Fatigue of the cement/bone interface: the surface texture of bone and loosening. J. Biomed. Mater. Res. B Appl Biomater. 2006 Feb; 76(2): 287-97.
  • [18] Arruda EM, Boyce MC. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids, 1993; 41, 2: 389-412.
  • [19] ASTM F1714-96. Standard Guide for Gravimetric Wear Assessment of Prosthetic Hip-Designs in Simulator Devices.
  • [20] Auger DD, Dowson D, Fisher J, Jin Z-M. Friction and lubrication in cushion form bearings for artificial hip joints. Proc Inst Mech Eng, Part H, J Eng in Med, 1993; 207(11): 25-33.
  • [21] Ballard WT, Callaghan J, Sullivan P, Johnston R. The results of improved cementing techniques for total hip arthroplasty in patients less than fifty years old. J. Bone Jt Surg, 1994; 76A: 959-964.
  • [22] Banczek ER, de Assis SL, de Oliveira MV, de Medeiros WS, Pereira LC, Costa I. Corrosion Resistance Evaluation of Porous Titanium with Biomimetic Coatings. Materials Science Forum, 2008; Vols. 591-593: 55-60.
  • [23] Banhart J. Manufacture, characterization and application of cellular metals and metal foams. Progress in Materials Science, 2001; 46: 559-632.
  • [24] Barbosa PL, Granja CC, Barrias IF. Amaral Polysaccharides as scaffolds for bone regeneration ITBM-RBM, 2005; 26: 212-217,
  • [25] Barbosa MA. Corrosion mechanisms of metallic biomaterials, in: Barbosa, M. A. (ed.). Biomaterials Degradation - Fundamental Aspects and Related Clinical Phenomena. Elsevier Inc., 1991.
  • [26] Barbour PSM, Stone MU, Fisher J. A hip joint simulator study using simplified loading and motion cycles generating physiological wear paths and rates. Proc. Inst Mech. Engrs, Part H. Journal of Engineering in Medicine, 1999; 213(H6): 455-467.
  • [27] Barnett PI, McEwen HM, Auger DD, Stone MH, Ingham E, Fisher J. Investigation of wear of knee prostheses in a new displacement/force-controlled simulator. Proc. Inst Mech. Engrs, Part H, Journal of Engineering in Medicine, 2002: 216(H1): 51-61.
  • [28] Barrère F, van Blitterswijk CA, de Groot K. Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomedicine. 2006; 1(3): 317-32.
  • [29] Bartel DL, Bicknell VL, Wright TM. The effect of conformity, thickness, and material on stresses in ultra-high molecular weight components for total joint replacement. J Bone Joint Surg Am. 1986 Sep; 68(7): 1041-51.
  • [30] Bartel OL, Burstein AH, Toda MD, Edwards DL. The effect of conformity and plastic thickness on contact stresses in metal-backed plastic implants. J. Biomech. Engng, 1985; 107(3): 193-199.
  • [31] Bauer GS, Murthi AM, Bigliani LU, Fixation for the millennium: The shoulder. Journal of Arthroplasty 2002, 17(4 Suppl. 1), 9-10.
  • [32] Bergstrom JS, Rimnac CM, Kurtz SM. Prediction of multiaxial mechanical behavior for conventional and highly crosslinked UHMWPE using a hybrid constitutive model. Biomaterials. 2003 Apr; 24(8): 1365-80.
  • [33] Best SM, Porter AE, Thian ES, Huang J. Bioceramics: Past, present and for the future. Journal of the European Ceramic Society, 2008; 28: 1319-1327.
  • [34] Bialo D, Paszkowski L, Wisniewski W, Sokolowski Z. Properties of High Porosity Structures Made of Metal Fibers. Recent Advances in Mechatronics 2007; 3: 470-474.
  • [35] Bil M. Poliuretanowe podłoża do hodowli tkanki kostnej. Rozprawa Doktorska. Politechnika Warszawska Wydział Inżynierii Materiałowej, Warszawa 2009 .
  • [36] Blazewicz S, Stocha L (eds). Biomateriały. Biocybernetyka i inżynieria biomedyczna. Warszawa, AIX EXIT, 2003.
  • [37] Bleach NC, Nazhat SN, Tanner KE, Kellomäki M, Törmälä P. Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate-polylactide composites. Biomaterials. 2002 Apr; 23(7): 1579-85.
  • [38] Boast D, Coveney VA (Eds.). Finite element analysis of elastomers. Professional Engineering Publishing Limited, London and Bury St Edmunds, UK, 1999.
  • [39] Bobyn JD, Pilliar RM, Cameron HU, Weatherly GC. The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Clin Orthop, 1980; (150): 263-270.
  • [40] Bobyn JD, Toh KK, Hacking SA, Tanzer M, Krygier JJ. Tissue response to porous tantalum acetabular cups: a canine model. Journal of Arthroplasty, 1999; 14(3): 347-354.
  • [41] Bodugoz-Senturk H, Macias CE, Kung JH, Muratoglu OK. Poly(vinyl alcohol)-acrylamide hydrogels as load-bearing cartilage substitute. Biomaterials. 2009 Feb; 30(4): 589-96.
  • [42] Boguszewski T, Swieszkowski W, Lewandowska M, Kurzydlowski KJ. Shrinkage of dental polymeric composites. e-Polymers, 2005; No. 032.
  • [43] Bram M, Schiefer H, Bogdanski D, Koller M, Buchkremer HP, Stover D. Implant surgery: How bone bonds to PM titanium. Metal Powder Report 2006; 61; 2: 26-31.
  • [44] Bray JC, Merrill EW. Poly(vinyl alcohol) hydrogels for synthetic articular cartilage material. J Biomed Mater Res, 1973; 7: 431-443.
  • [45] Brittberg M. Autologous chondrocyte implantation-technique and long-term follow-up. Injury. 2008 Apr; 39 Suppl 1: S40-9.
  • [46] Brochhausen C, Lehmann M, Halstenberg S, Meurer A, Klaus G, Kirkpatrick CJ. Signalling molecules and growth factors for tissue engineering of cartilage-what can we learn from the growth plate? J Tissue Eng Regen Med. 2009 Aug; 3(6): 416-29.
  • [47] Bronzino JD. Tissue Engineering and Artificial Organs. CRC Press Taylor and Francis Group, Boca Raton, Florida, 2006.
  • [48] Brown TD, Shaw DT. In vitro contact stress distribution on the femoral condyles. J Orthop Res. 1984; 2(2): 190-9.
  • [49] Buchholz HW, Elson RA, Heinert K. Antibiotic-loaded acrylic cement: current concepts. Clin Orthop Relat Res. 1984 Nov; (190): 96-108.
  • [50] Buckwalter JA, Mankin HJ. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr Course Lect 1998; 47: 477-486.
  • [51] Buckwalter JA. Articular cartilage injuries. Clin Orthop Relat Res. 2002 Sep: (402): 21-37.
  • [52] Burgess IC, Kotar M, Cunningham JL, Unsworth A. Development of a six station knee wear simulator and preliminary wear results. Proc. Inst Mech. Engrs, Part H, Journal of Engineering in Medicine, 1997; 211 (H1): 37-47.
  • [53] Cachinho SCP, Correia RN. Titanium scaffolds for osteointegration: mechanical, in vitro and corrosion behavior. Journal of Materials Science: Materials in Medicine, 2008; 19: 451-457.
  • [54] Campbell AA. Bioceramics for implant coatings. Materials Today, 2003; Volume: 6, Issue: 11, November: 26-30.
  • [55] Cancedda R, Bianchi G, Derubeis A, Quarto R. Cell therapy for bone disease: a review of current status. Stem Cells. 2003; 21(5): 610-9.
  • [56] Cao T, Ho KH, Teoh SH. Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling. Tissue Eng. 2003; 9 Suppl 1: S103-12.
  • [57] Cappello F, Mancuso A. A genetic algorithm for combined topology and shape optimisations. Computer-Aided Design, 2003; 35: 761-769.
  • [58] Caravia L, Dowson D, Fisher J, Corkhill PH, Tighe BJ. Friction of hydrogel and polyurethane elastic layers when sliding against each other under a mixed lubrication regime. Wear, 1995; 181-183:236-240.
  • [59] Carranza-Bencano A, Armas-Padrón JR, Gili-Miner M, Lozano MA. Carbon fiber implants in osteochondral defects of the rabbit patella. Biomaterials. 2000 Nov; 21(21): 2171-6.
  • [60] Carter DR, Beaupre GS, Giori NJ, Helms JA. Mechanobiology of skeletal regeneration. Clin Orthop Relat Res. 1998 Oct; (355 Suppl): S41-55. Review.
  • [61] Cauich-Rodriguez JV, Deb S, Smith R. Effect of cross-linking agents on the dynamic mechanical properties of hydrogel blends of poly(acrylic acid)-poly(vinyl alcohol-vinyl acetate). Biomaterials, 1996; 17: 2259-2264.
  • [62] Centers for Disease Control. Prevalence of arthritis - United States. Morb Mortal Wkly Rep. 2001; 50: 334-336.
  • [63] Chandra R, Rustgi R. Biodegradable polymers. Prog. Polym. Sci. 1998, 23, 1273-1335.
  • [64] Chang BS, Lee CK, Hong HJ, Youn KS, Ryu HS and Chung SS. Osteoconduction at porous hydroxyapatite with various pore configurations, Biomaterials, 2000; 21(12): 1291-1298.
  • [65] Charnley J, Total hip replacement by low-friction arthroplasty. Clin Orthop 72 (1970), 7-21.
  • [66] Chevalier J, Gremillard L. Ceramics for medical applications: A picture for the next 20 years. Journal of the European Ceramic Society, 2009; Volume: 29, Issue: 7, April: 1245-1255.
  • [67] Chistolini P, Ruspantini I, Bianco P, Corsi A, Canced-da R, Quarto R. Biomechanical evaluation of cell-loaded and cell-free hydroxyapatitc implants for the reconstruction of segmental bone defects. J Mater Sci Mater Med 1999 Dec; 10(12): 739-742.
  • [68] Chłopek J, Morawska-Chochół A, Bajor G, Adwent M, Cieślik-Bielecka A, Cieślik M, Sabat D. The influence of carbon fibres on the resorption time and mechanical properties of the lactide-glycolide co-polymer. J Biomater Sci Polym Ed., 2007; 18(11): 1355-68.
  • [69] Christie MJ. Clinical applications of Trabecular Metal. The American Journal of Orthopedics, 2002; 31(4): 219-220.
  • [70] Chu CR, Monosov AZ, Amiel D. In situ assessment of cell viability within biodegradable polylactic acid polymer matrices. Biomaterials. 1995; 16: 1381-4.
  • [71] Churchill RS, Boorman RS, Fehringer EV, Matsen FA 3rd. Glenoid cementing may generale sufficient heat to endanger the surrounding bone. Clin Orthop Relat Res. 2004 Feb; (419): 76-9.
  • [72] Clements KM, Bee ZC, Crossingham GV, Adams MA, Sharif M. How severe must repetitive loading be to kill chondrocytes in articular cartilage? Osteoarthritis and Cartilage. 2001; Volume: 9, Issue: 5, July: 499-507.
  • [73] Cofield RH. Uncemented total shoulder arthroplasty. A review. Clinical Orthopaedics and Related Research, 1994; 307: 86-93.
  • [74] Collier J P, Bauer TW, Bloebaum RD, Bobyn JD, Cook SD, Galante JO, Harris WH, Hea WC, Jasty MJ, Mayor MB, Sumner DR, Whiteside LA. Results of implant retrieval frompostmortem specimens in patients with well-functioning long-term total hip replacement. Clin Orthop, 1992; 274: 97-112.
  • [75] Collins DN. Shoulder replacement: state of the art. Sport Med Arthrosc Rev, 1999; 7: 145-154.
  • [76] Coombes AGA. Rizzi SC, Williamson M, Barralet JE, Downes S, Wallace WA. Precipitation casting of polycaprolactone for applications in tissue engineering and drug delivery. Biomaterials, 2004; 25: 315-325.
  • [77] Corkhill PH, Trevett AS, Tighe BJ. The potential of hydrogels as synthetic articular cartilage. Proc Instn Mech Eng, Part 11, Eng Med, 1990; 204: 147-155.
  • [78] Costa L, Bracco P, Brach del Prever EM, Kurtz SM, Gallinaro P. Oxidation and oxidation potential in contemporary packaging for polyethylene total joint replacement components. J Biomed Mater Res B Appl Biomater. 2006 Jul: 78(1): 20-6.
  • [79] Costa L, Carpentieri I, Bracco P. Post electron-beam irradiation oxidation of orthopaedic Ultra-High Molecular Weight Polyethylene (UHMWPE) stabilized with vitamin E. Polymer Degradation and Stability 2009; 94(9): 1542-1547.
  • [80] Covert RJ, Ott RD, Ku DN. Friction characteristics ofa potential articular cartilage biomaterial. Wear, 2003: 255, 7-12, 1064-1068.
  • [81] Crockett R, Roba M, Naka M, Gasser B, Delfosse D, Frauchiger V, Spencer ND. Friction, lubrication, and polymer transfer between UHMWPE and CoCrMo hip-implant materials: a fluorescence microscopy study. J Biomed Mater Res A. 2009 Jun 15; 89(4): 1011-8.
  • [82] Culleton P, Prendergast PJ, Taylor D. Fatigue failure in the cement mantle of an artificial hip joint. Clin Mater. 1993; 12(2): 95-102.
  • [83] Currier BH, Currier JH, Mayor MB, Lyford KA, Van Citters DW, Collier JP. In vivo oxidation of gamma-barrier-sterilized ultra-high-molecular-weight polyethylene bearings. J Arthroplasty, 2007; 22: 721-731.
  • [84] Daar O, Marra G, Carandang G., Sartori M, Havey R, Patwardhan A. Micromotion of uncemented metal-baeked glenoid components: cadaveric study. Proceedings of 47th Annual Meeting, ORS, February 25-28, San Francisco, California. 2001.
  • [85] Dabrowski B, Swieszkowski W, Godlinski D, Kurzydlowski KJ. Highly Porous Titanium Scaffolds for Orthopaedic Applications. J Biomed Mater Res B Appl Biomater, 2010 (in print).
  • [86] Dąbrowski JR. Spiekane biomateriały na bazie stopu Co-Cr-Mo, Oficyna Wydawnicza PW. Warszawa 2004, .
  • [87] del Palomar AP, Calvo B, Doblaré M. An accurate finite element model of the cervical spine under quasi-static loading. J Biomech. 2008; 41(3): 523-31.
  • [88] Denga Y, Zhaoa K, Zhangb X-F, Hub P, Chena G-Q. Study on the three-dimensional proliferation of rabbit articular cartilage-derived chondrocytes on polyhydroxyalkanoate scaffolds Biomaterials, 2002; 23: 4049-4056.
  • [89] Dong J, Uemura T, Shirasaki Y, Tateishi T. Promotion of bone formation using highly pure porous b-TCP combined with bone marrow derived osteoprogenitor cells. Biomaterials, 2002, 23: 4493-4502.
  • [90] Dowson D, Fisher J, Jin ZM, Auger DD, Jobbins B. Design considerations for cushion form bearings in artificial hip joints. Proc Inst Mech Eng [H]. 1991; 205(2): 59-68.
  • [91] Dowson D, Jin ZM. Metal-on-metal hip joint tribology. Proc Inst Mech Eng H. 2006 Feb; 220(2): 107-18. Review.
  • [92] Dowson D, Unsworth A, Cooke AF, Gvozdanovic D. Lubrication of joints, in An Introduction to the Biomechanics of Joints and Joint Replacement, (Eds Dowson D, Wright V) Mechanical Engineering Publication, London, 1981: 120-145.
  • [93] Eglin D, Alini M. Degradable polymeric materials for osteosynthesis: tutorial, European cells and Materials, 2008; 16: 80-90.
  • [94] Einhorn TA, Buckwaiter JA, O’Keefe RJ. Orthopaedic Basic Science, American Academy of Orthopaedic Surgeons, 2007.
  • [95] El Fray M, Pilaszkiewicz A, Święszkowski W, Kurzydłowski KJ. Zgłoszenie patentowe P378849 (2006): Hydrożel polimerowy oraz sposób wytwarzania hydrożelu polimerowego (Politechnika Warszawska i Politechnika Szczecińska).
  • [96] El Fray M, Pilaszkiewicz A, Swieszkowski W, Kurzydlowski KJ. Morphology assessment of chemically modified and cryostructured poly(vinyl alcohol) hydrogel, European Polymer Journal. 2007; 43: 2035-2040.
  • [97] El Fray M, Święszkowski W, Kurzydlowski KJ. Mechanical properties of chemically and physically crosslinked poly(vinyl alcohol) cryogels. Engineering of Biomaterials. 2005; 47-53: 226-227.
  • [98] Elfick AP, Hall RM, Pinder IM, Unsworth A. The effect of socket design, materials and liner thickness on the wear of the porous coated anatomic total hip replacement. Proc Inst Mech Eng [H]. 2001; 215(5): 447-57.
  • [99] Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Yaremchuk M, Langer R. Transdermal photopolymerization of poly(ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage. Plast Reconstr Surg 1999; 104(4): 1014-1022.
  • [100] Esen Z, Bor S. Processing of titanium foams using magnesium spacer particles. Scripta Materialia 2007; 56: 341-344.
  • [101] Figurska M, Święszkowski W, Telega JJ. Influence of wear debris on behaviour and biomechanical properties of bone-implant interface. Russ. J. Biomech. 2005; 9(2): 20-32.
  • [102] Fitzpatrick D, Ahn P, Brown T, Poggie R. Friction coefficients of porous tantalum and cansellous and cortical bone. Proceedings of 21st Annual American Society of Biomechanics, Clemson, South Carolina, 1997, September 24-27.
  • [103] Franklin JL, Barrett WP, Jackins SE, Matsen FA. 3rd. Glenoid loosening in total shoulder arthroplasty. Association with rotator cuff deficiency. Journal of Arthroplasty, 1988; 3(1): 39-46.
  • [104] Frenkel SR, Di Cesare PE. Scaffolds for articular cartilage repair. Ann Biomed Eng. 2004 Jan; 32(1): 26-34.
  • [105] Friedman RJ, Black J, Galante JO, Jacobs JJ, Skinner HB. Current concepts in Orthopaedic biomaterials and implant tixation. Instr Course Lect. 1994; 43: 233-55.
  • [106] Fukuda A, Kato K, Hasegawa M, Hirata H, Sudo A, Okazaki K, Tsuta K, Shikinami Y, Uchida A. Enhanced repair of large osteochondral defects using a combination of artificial cartilage and basic fibroblast growth factor. Biomaterials. 2005 Jul; 26(20): 4301-8.
  • [107] Gao J, Dennis JE, Solchaga LA, Awadallah AS, Goldberg VM, Caplan AI. Tissue-engineered fabrication of an osteochondral composite graft using rat bone marrow-derived mesenchymal stem cells. Tissue Eng. 2001 Aug; 7(4): 363-71.
  • [108] Geesink RG. Clinical, radiological and human histological experience with hydroxyapatite coatings in orthopaedic surgery. Acta Orthop Belg. 1993; 59 Suppl 1: 160-1.
  • [109] Gilbert JL, Buckley CA, Jacobs JJ. In vivo corrosion of modular hip prosthesis components in mixed and similar metal combinations. The effect of crevice, stress, motion and alloy coupling. J. Biomed. Mater. Res., 27: 1533-1544, 1993.
  • [110] Gill HS, Waite JC, Short A, Kellett CF, Price AJ, Murray DW. In vivo measurement of volumetric wear of a total knee replacement. Knee. 2006 Aug; 13(4): 312-7.
  • [111] Gillis A, Li S. Polyethylene damage of glenoid components from total shoulder replacements as determined from retrieval analysis. In Proceedings of 47th Annual Meeting of ORS, San Francisco, California, 25-28 February 2001, 0775.
  • [112] Giusti P, Lazzeri L, Barbani N, Narducci P, Bonaretii A, Palla M, Lelli L. Hydrogels of poly(vinyl alcohol) and collagen as new bioartificial materials. J Mater Sci: Mater in Medic. 1993; 4: 538-542.
  • [113] Goetzen N, Lampe F, Nassut R, Morlock MM. Load-shift-numerical evaluation of a new design philosophy for uncemented hip prostheses, Journal of Biomechanics, 2005; 38: 595-604.
  • [114] Goldsmith AA, Dowson D. Development of a ten-station, multi-axis hip joint simulator. Proc. Inst Mech. Engrs, Part H, Journal of Engineering in Medicine, 1999; 213(114): 311-316.
  • [115] Gomes ME, Godinho JS, Tchalamov D, Cunha AM, Reis RL. Alternative tissue engineering scaffolds based on starch: processing methodologies, morphology, degradation and mechanical properties, Materials Science and Engineering C, 2002; 20: 19-26.
  • [116] Gomez-Benito MJ, Garcia-Aznar JM, Kuiper JH, Doblare M. Influence of fracture gap size on the pattern of long bone healing: a computational study. J Theor Biol. 2005 Jul 7; 235(1): 105-19.
  • [117] Göpferich A. Mechanism of polymer degradation and erosion. Biomaterials, 1996; 17: 103-114.
  • [118] Göpferich A. Mechanisms of polymer degradation and erosion. Biomaterials, 1996; 17: 103-114.
  • [119] Gorna K, Gogolewski S. Biodegradable porous polyurethane scaffolds for tissue repair and regeneration. J Biomed Mater Res Part B, 2006; (79): 128-138.
  • [120] Gradzka-Dahlke M, Dabrowski JR, Dabrowski B. Modification of mechanical properties of sintered implant materials on the base of Co-Cr-Mo alloy. Journal of Materials Processing Tech. 2008; Volume: 204, Issue: 1-3, August 11: 199-205.
  • [121] Grande DA, Halberstadt C, Naughton G, Schwartz R, Manji R. Evaluation of matrix scafolds for tissue engineering of articular cartilage grafts. J Biomed Mat Res, 1997; 34: 211-20.
  • [122] Grayson WL, Chao PH, Marolt D, Kaplan DL, Vunjak-Novakovic G. Engineering custom-designed osteochondral tissue grafts. Trends Biotechnol. 2008 Apr; 26(4): 181-9.
  • [123] Griffith LG. Polymeric Biomaterials, Acta Mater., 2000; 48: 263-277.
  • [124] Guarino V, Ambrosio L. The synergic effect of polylactide fiber and calcium phosphate particle reinforcement in poly epsilon-caprolactone-based composite scaffolds. Acta Biomater. 2008 Nov; 4(6): 1778-87.
  • [125] Gunther SB, Graham J, Morris TR, Ries MD, Pruitt L. Retrieved glenoid components: a classification system for surface damage analysis. J. Arthroplasty. 2002; 17(1): 95-100.
  • [126] Gurrappa I. Characterization of titanium alloy Ti-6Al-4V for chemical, marine and industrial applications. Materials Characterization 2003; 51; 2-3: 131-139.
  • [127] Hall RM, Unsworth A. Friction in hip prostheses. Biomaterials, 1997, 18(15), 1017-1026.
  • [128] Hasegawa M, Sudo A, Shikinami Y, Uchida A. Biological performance of a three-dimensional fabric as artificial cartilage in the repair of large osteochondral defects in rabbit. Biomaterials. 1999; (20): 1969-75.
  • [129] Hassan ChM, Peppas NA. Structure and application of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods Adv. Polym. Sci. 2000; (153): 37-65.
  • [130] Haynes DR, Rogers SD, Hay S, Pearcy MJ, Howie DW. The difference in toxicity and release of bone-resorbing mediators induced by titanium and cobalt-chromium-alloy wear particles. J Bone Jt Surg, 1993; 75A: 825-834.
  • [131] Heljak M, Swieszkowski W, Lam CXF, Hutmacher DW, Kurzydlowski KJ. Numerical analyses of the polymeric scaffolds for bone tissue engineering. Tissue Engineering Part A, 2008; Volume: 14 Issue: 5: 890.
  • [132] Heljak M, Jaroszewicz J, Święszkowski W, Kurzydłowski KJ. Mikrotomografia rentgenowska jako metoda obrazowania w inżynierii materiałowej. Materiały Konferencyjne Krajowej Konferencji Badań Radiograficznych „POPÓW 2009”, 24-26 sierpień 2009, Popów: 43-53.
  • [133] Heljak M, Swieszkowski W, Lam CXF, Hutmacher DW, Kurzydlowski KJ. How can numerical modeling complement scaffold design. 2010 (Submitted).
  • [134] Ho ST, Hutmacher DW. A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials. 2006 Mar; 27(8): 1362-76.
  • [135] Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2002 Jan 17; 54(1): 3-12.
  • [136] Hollister SJ, Maddox RD, Taboas JM. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 2002; 23: 4095-4103.
  • [137] Hopkins AR, Hansen UN, Amis AA, Knight L, Taylor M, Levy O, Copeland SA. Wear in the prosthetic shoulder: association with design parameters. J Biomech Eng. 2007 Apr; 129(2): 223-30.
  • [138] Hoque ME, Hutmacher DW, Feng W, Li S, Huang MH, Vert M, Wong YS. Fabrication using a rapid prototyping system and in vitro characterization of PEG-PCL-PLA scaffolds for tissue engineering. J.Biomater. Sci. Polym. Ed. 2005; 16 (12): 1595-1610.
  • [139] Hoshino A, Fukuoka Y, Ishida A. Accurate in vivo measurement of polyethylene wear in total knee arthroplasty. J. Arthroplasty, 2002; 17(4): 490-496.
  • [140] http://www.implex.com/hedrocel.html. April 2002
  • [141] Huang CH, Young TH, Lee YT, Jan JS, Cheng CK. Polyethylene failure in New Jersey low-contact stress total knee arthroplasty. J Biomed Mater Res. 1998 Jan; 39(1): 153-60.
  • [142] Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology 2003; 63: 2223-2253.
  • [143] Huber M, Reinisch G, Trettenhahn G, Zweymuller K, Lintner F. Presence of corrosion products and hypersensitivity-associated reactions in periprosthetic tissue after aseptic loosening of total hip replacements with metal bearing surfaces. Acta Biomaterialia 2009; Volume: 5, Issue: 1, January: 172-180.
  • [144] Huiskes R, Weinans H, Van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effect of flexible materials. Clinical Orthopedics, 1992; 272: 124-134.
  • [145] Huiskes R. The various stress patterns of press-fit, ingrown and cemented femoral stems. Clinical Orthopedics, 1990; 261: 27-38.
  • [146] Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage. 2002 Jun; 10(6): 432-63. Review.
  • [147] Hutmacher DW, Teoh SH, Zein I, Ranawake M, Lau S. Tissue engineering research: the engineer’s role. Med Device Technol. 2000 Jan-Feb; 11(1): 33-9.
  • [148] Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000; 21: 2529-2543.
  • [149] Ise K, Kawanabe K, Tamura J, Akiyama H, Goto K, Nakamura T. Clinical Results of the Wear Performance of Cross-Linked Polyethylene in Total Hip Arthroplasty Prospective Randomized Trial. J Arthroplasty. 2009; 24(8): 1216-20.
  • [150] Jacobs JJ, Gilbert JL, Urban RM, Corrosion of Metal Orthopaedic Implants. Journal of Bone and Joint Surgery 1998; 80-A, No. 2: 268-282.
  • [151] Jacobs JJ, HallabNJ, Urban RM, Wimmer MA. Wear particles. J Bone Joint Surg Am. 2006 Apr; 88 Suppl 2:99-102.
  • [152] Jaegermann Z, Ślósarczyk A, Gęsta i porowata bioceramika korundowa w zastosowaniach medycznych. Uczelniane Wydawnictwa Naukowo-Dydaktyczne AGH. Kraków, 2007.
  • [153] Jin ZM, Dowson D, Fisher J. Stress analysis of cushion form bearings for total hip replacement. Proc Inst Mech Eng [H]. 1991: 205(4): 219-26.
  • [154] Jin ZM, Dowson D, Fisher J. A parametric analysis of the contact stress in ultra-high molecular weight polyethylene acetabular cups. Med. Engng Phys. 1994; 16(5): 398-405.
  • [155] Jones AC, Arns CH, Hutmacher DW, Milthorpe BK, Slieppard AP, Knackstedt MA. The correlation of poro morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth. Biomaterials, 2009; 30: 1440-1451.
  • [156] Joshi AB, Porter ML, Trail IA, Hunt LP, Murphy JCM, Hardinge K. Long-term results of Charnley low-friction arthroplasty in young patients. J Bone Jt Surg, 1993; 75B: 616-623.
  • [157] Joshi MG, Advani SG, Miller F, Santare MH. Analysis of a femoral hip prosthesis designed to reduce stress shielding. J Biomechanics, 2000; 33: 1655-162.
  • [158] Judet J, Judet R. Resection. reconstruction of the hip, arthroplasty with acrylic prosthesis. F&S Livingstone, Edinburgh, 1954.
  • [159] Kaddick C and Wimmer MA. Hip simulator wear testing according to the newly introduced standard ISO 14242. Proc. Inst Mech. Engrs, Part H. Journal of Fngineering in Medicine, 2001, 215(H5), 429-442.
  • [160] Katta JK, Marcolongo M, Lowman A, Mansmann KA. Friction and wear behavior of poly(vinyl alcohol)/poly(vinyl pyrrolidone) hydrogels for articular cartilage replacement. J Biomed Mater Res A. 2007 Nov; 83(2): 471-9.
  • [161] Kelly DJ, Prendergast PJ. Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects. Journal of Biomechanics, 2005; 38: 1413-1422.
  • [162] Kelly DJ, Prendergast PJ. Prediction of the optimal mechanical properties for a scaffold used in osteochondral defect repair. Tissue Eng. 2006 Sep; 12(9): 2509-19.
  • [163] Kerin AJ, Coleman A, Wisnom MR, Adams MA. Propagation of surface fissures in articular cartilage in response to cyclic loading in vitro. Clinical Biomechanics, 2003; Volume: 18, Issue: 10: 960-968.
  • [164] Khan M, Kuiper JH, Richardson JB. The exercise-related rise in plasma cobalt levels after metal-on-metal hip resurfacing arthroplasty. J Bone Joint Surg Br. 2008 Sep; 90(9): 1152-7.
  • [165] Kidoaki S, Kwon IK, Matsuda T. Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials. 2005 Jan; 26(1): 37-46.
  • [166] Kienapfel H, Sprey C, Witke A and Griss P. Implant fixation by bone ingrowth. The Journal of Arthroplasty. 1999, 14(3), 355-368.
  • [167] Kijenska E, Ciach T, Swieszkowski W, Kurzydlowski KJ: The interaction between nanofibers mesh covered scaffolds and chondrocytes. Tissue Engineering Part A, 2008; Volume: 14 Issue: 917.
  • [168] Kim In-Yong, Seo Seog-Jin, Moon Hyun-Seuk, Yoo Mi-Kyong Park, In-Young, Kim Bom-Chol, Cho Chong-Su. Chitosan and its derivatives for tissue engineering applications Biotechnology Advances, 2008; 26: 1-21.
  • [169] Kobayashi M, Oka M. The lubricative function of artificial joint material surfaces by confocal laser scanning microscopy. Comparison with natural synovial joint surfaee. Biomed Mater Eng. 2003; 13(4): 429-37.
  • [170] Kohles SS, Roberts JB, Upton ML, Wilson CG, Bonassar LJ, Schlichting AL. Direct perfusion measurements of cancellous bone anisotropic permeability, Journal of Biomechanics 2001; 34: 1197-1202.
  • [171] Kon M, de Visser AC. A poly(HEMA) sponge for restoration of articular cartilage defects. Plast Reconstr Surg. 1981 Mar; 67(3): 288-94.
  • [172] Kornacka E, Przybytniak G, Święszkowski W. The influence of crystallinity on radiation stability of UHMWPE. Engineering of Biomaterials, 2006; 58-60: 146-149.
  • [173] Kornacka EM, Przybytniak G, Swieszkowski W. The Influence of Crystallinity on Radiation Stability of UHMWPE. Nuclear Inst. and Methods in Physics Research, 2010, Article in press.
  • [174] Ku DN, Braddon LG, Woolton DM. Poly(vinyl aleohol) cryogel. US Patent No. 59818226, 1999.
  • [175] Kühn K-D. Bone cements: up-to-date comparison of physical and chemical properties of commercial materials, Springer, Berlin, 2000.
  • [176] Kurtz S (ed.). UHMWPE Biomaterials. Ultra-High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices. Elsevier Inc. 2009.
  • [177] Kurtz SM, Rimnac CM, Hozack W, et al: In vivo degradation of polyethylene liners after gamma sterilization in air. J Bone Joint Surg Am, 2005; 87: 815-823.
  • [178] Kurzydłowski KJ, Lewandowska M, Swieszkowski W, Lewandowska-Szumieł M. Degradation of Engineering Materials - Implications to Regenerative Medicine. Macromolecular Symposia. 2007; 253: 1-9.
  • [179] Lacroix D, Murphy LA, Prendergast PJ. Three-dimensional finite element analysis of glenoid replacement prostheses: a comparison of keeled and pegged anchorage systems. J Biomech Eng. 2000; 122(4): 430-436.
  • [180] Lam CXF, Olkowski R, Swieszkowski W, Tan KC, Gibson I, Hutmacher DW. Composite PLDLLA/TCP scaffolds for Bone Engineering: Mechanical and In Vitro Evaluations. IFMBE Proceedings. 2009a; 23: 1480-1483.
  • [181] Lam CX, Hutmacher DW, Schantz JT, Woodruff MA, Teoh SH. Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. J. Biomed Mater Res A. 2009h Sep 1; 90(3): 906-19.
  • [182] Lam CXF, Olkowski R, Swieszkowski W, Tan KC, Gibson I, Hutmacher DW. Mechanical and in vitro evaluations of composite PLDLLA/TCP scaffolds for bone engineering. Virtual and Physical Prototyping 3 (4), 2008, 193-197.
  • [183] Lange J, Follak N, Nowotny T, Merk H. Results of SaluCartilage implantation for stage IV chondral defects in the knee joint area. Unfallchirurg. 2006 Mar; 109(3): 193-9.
  • [184] Laurencin CT, Ambrosio AMA, Borden MD, Cooper JA, Tissue engineering: orthopedic applications. Annu. Rev. Biomed. Eng. 1999; 1: 19-46.
  • [185] Lazarus MD, Jensen KL, Southworth C, Matsen FA 3rd. The radiographic evaluation of keeled and pegged glenoid component insertion. J Bone Joint Surg Am. 2002 Jul; 84-A(7): 1174-82.
  • [186] Lee YH, Lee JH, An IG, Kim C, Lee DS, Lee YK, Nam JD. Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds. Biomaterials. 2005 Jun; 26(16): 3165-72.
  • [187] Levanthal GC. Titanium: a metal for surgery. J Bone Joint Surg. 1951; 33: 473.
  • [188] Lewandowska-Szumieł M, Sikorski K, Szummer A, Lewandowski Z, Marczyński W. Osteoblast response to the elastic strain of metallic support. J Biomech. 2007; 40(3): 554-60.
  • [189] Lewis G. Polyethylene wear in total hip and knee arthroplastics. J Biomed Mater Res. 1997 Spring; 38(1): 55-75.
  • [190] Liggins AB, Finlay JB. Recording contact area and pressure in joint interface. In: Little EG, editor. Experimental mechanics; technology transfer between high tech engineering and biomechanics. Amsterdam: Elsevier; 1992.
  • [191] Little MAR, Fremann, Swanson SAV. In: V. Wright, Editor, Experiments on Friction in the Human Hip Joint, Lubrication and Wear in Joints, Sector, London 1969.
  • [192] Long M, Rack HJ. Titanium alloys in total joint replacement - a materials science perspective. Biomaterials, 1998; Volume: 19, Issue: 18, September: 1621-1639.
  • [193] Lu H, Guo L, Kawazoe N, Tateishi T, Chen G. Effects of poly(L-lysine), poly(acrylic acid) and poly(ethylene glycol) on the adhesion, proliferation and chondrogenic differentiation of human mesenchymal stem cells. J Biomater Sci Polym Ed. 2009; 20(5-6): 577-89.
  • [194] Ma PX, Schloo B, Mooney D, Langer R. Development of biomechanical properties and morphogenesis of in vitro tissue engineered cartilage. J Biomed Mater Res, 1995; 29: 1587-95.
  • [195] Ma Z, Kotaki M, Inai R, Ramakrishna S. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng. 2005 Jan-Feb; 11(1-2): 101-9.
  • [196] Maher SA, Doty SB, Torzilli PA, Thornton S, Lowman AM, Thomas JD, Warren R. Wright TM, Myers E. Nondegradable hydrogels for the treatment of focal cartilage defects. J Biomed Mater Res A. 2007 Oct; 83(1): 145-55.
  • [197] Malafaya PB, Silva G A, Reis RL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Advanced Drug Delivery Reviews 2007; 59: 207-233.
  • [198] Malda J, Woodfield TB, van der Vloodt F, Kooy FK, Martens DE, Tramper J, van Blitterswijk CA, Riesle J. The effect of PEGT/PBT scaffold architecture on oxygen gradients in tissue engineered cartilaginous constructs. Biomaterials. 2004 Nov; 25(26): 5773-80.
  • [199] Maloney WJ, Lane Smith R, Castro F, Schurman DJ. Firoblast response to metallic debris in vitro. J Bone Jt Surg. 1990; 72B: 966-970.
  • [200] Marciniak J. Biomateriały. Wydawnictwo Politechniki Śląskiej. Gliwice 2002.
  • [201] Marti A. Cobalt-base alloys used in bone surgery. Injury, 2000; Volume: 31. Supplement 4: D18-D21.
  • [202] Martin I, Miot S, Barbero A, Jakob M, Wendt D. Osteochondral tissue engineering. J Biomech. 2007; 40(4): 750-65.
  • [203] McKelvie ML, Palmer SB. The interaction of ultrasound with cancellous bone, Phys. Med. Biol. 1991; 36, 10: 1331-1340.
  • [204] Meister K, Cobb A, Bentley G. Treatment of painful articular cartilage defects of the patella by carbon-fibre implants. J Bone Joint Surg Br. 1998 Nov; 80(6): 965-70.
  • [205] Mercier NR, Costantino HR, Tracy MA, Bonassar LJ. Poly(lactide - co - glycolide) micro-spheres as a moldable scaffold for cartilage tissue engineering. Biomaterials, 2005; (26): 1945-1952.
  • [206] Messner K, Gillquist J. Synthetic implants for the repair of osteochondral defects of the medial femoral condyle: a biomechanical and histological evaluation in the rabbit knee. Biomaterials. 1993 Jun; 14(7): 513-21.
  • [207] Meyer C, Horas U, Horbelt R, Schnettler R. Dislocation of artificial cartilage (SaluCartialge). Unfallchirurg. 2005; 108(2): 163-6.
  • [208] Michalewicz Z. Genetic Algorithms + data structures = evolutionary programs, Berlin, Springer Verlag, 1996.
  • [209] Middleton JC, Tipton AJ. Synthetic biodegradable polymers as orthopedic devices, Biomaterials, 2000; 21: 2335-2346.
  • [210] Minns RJ, Muckle DS. Mechanical and histological response of carbon fibre pads implanted in the rabbit patella. Biomaterials, 1989 May; 10(4): 273-6.
  • [211] Misra SK, Ansari TI, Valappil SP, Mohn D, Philip SE, Stark WJ, Roy I, Knowles JC, Salih V, Boccaccini AR. Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications. Biomaterials, 2010; 31, 2806-2815.
  • [212] Moczulska M, Bitar M, Lischer S, Swieszkowski W, Bruinik A. Development of textile scaffolds for bone tissue engineering. Tissue Engineering Part A, 2008; Volume: 14, Issue: 5: 838 .
  • [213] Mont MA, Maar DC, Krackow KA, Jacobs MA, Jones LC, Hungerford DS. Total hip relacement without cement for non-inflammatory ostearthrosis in patients who are less than fory0five years old. J Bone Jt Surg, 1993; 75A: 740-751.
  • [214] Moroni L, Schotel R, Hamann D, de Wijn JR, van Blitterswijk CA. 3D Fiber-Deposited Electrospun Integrated Scaffolds Enhance Cartilage Tissue Formation. Adv. Funct. Mater. 2008; 18: 53-60.
  • [215] Mow VC, Guo XE. Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies. Annu Rev Biomed Eng. 2002; 4: 175-209.
  • [216] Mow VC, Hayes WC (eds.) Basic Orthopaedic Biomechanics, 2nd ed., Lippincott-Raven Publisher, Philadelphia, 1997.
  • [217] Mow VC, Huiskes R. (eds) Basic Orthopaedic biomechanics & mechano-biology. Lippincott Williams & Wilkins, 2004.
  • [218] Mow VC, Wang CCB. Some bioengineering considerations for tissue engineering of articular cartilage. Clin Orthop, 1999; 367S: S204-S223.
  • [219] Munting E, Verhelpen M. Fixation and effect on bone strain pattern of the stemless hip prosthesis. J Biomechanics, 1995; 28(8): 949-961.
  • [220] Neer CS. Replacement arthroplasty for glenohumeral osteoarthritis. Journal of Bone and Joint Surgery, 1974; 56: 1-13.
  • [221] Nicolais L, Narkis M. Stress-strain behaviour of styrene-acrylonitrile/glass bead composites in the glassy region. Polym Eng Sci, 1971; 11: 194-199.
  • [222] Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Science and Technology of Advanced Materials, 2003; Volume: 4, Issue: 5: 445-454.
  • [223] Noguchi T, Yamamuro T, Oka M, Kamur P, Kotoura Y, Hyon S, Ikada Y. Poly(vinyl alcohol) hydrogel as an artificial articular cartilage: evaluation of biocompatibility, J Appl Biomat, 1991; 2(2): 101-107.
  • [224] Oka M, Chang Y-S, Nakamura T, Ushio K, Toguchida J, Gu H-O. Synthetic osteochondral replacement of the femoral articular surface. J Bone Jt Surg, 1997; 79B(6): 1003-1007.
  • [225] Oka M, Ushio K, Kumar P, Ikeuchi K, Hyon SH, Nakamura T, Fujita H. Development of artificial articular cartilage. Proc Inst Mech Eng H. 2000; 214(1): 59-68.
  • [226] Olkowski R, Lam CXF, Swieszkowski W, Hutmacher D. Biocompatibility, osteocompatibility and mechanical evaluations of novel PLDLLA/TCP scaffolds. Tissue Engineering Part A, 2008; Volume: 14 Issue: 5: 812-813 .
  • [227] Oosterom R, Święszkowski W, van der Helm FCT. Biomechanical aspects of patient and design factors of the shoulder endo-prosthesis. Proceed. of the conference of the IMechE: Comrades in Arms. London, UK, 2-3 April 2001a: 8-9.
  • [228] Oosterom R, Herder JL, van der Helm FCT, Święszkowski W, Bersee HEN. Translational stiffness of the replaced shoulder joint. J. Biomechanics, 2003a; 26: 1897-1907.
  • [229] Oosterom R, Święszkowski W, Bersee H, Beukers A. Confromity and constraintness in glenoid componet design. Proceed. Fifth Inter. Symp. on Comp. Method in Biomech. & Biomed. Eng., 31 Oct-3 Nov, 2001b, Rome, ID 1-18: 1-6.
  • [230] Oosterom R, Święszkowski W, Bersee H. van der Helm FCT. Patient factors in shoulder arthroplasty. Acta of Bioengineering and Biomechanics, 2001c; Vol. 3, Supl. 2: 394-399.
  • [231] Oosterom R, Święszkowski W, Bersee HEN, Beukers A. Gleno-humeral translation and wear in shoulder arthroplasty. Proceed. of the 8th Dutch Annual Conference on Biomedical Engineering, IBME, Arnhem, The Netherlands. 8-9 October 2001d: 120-122.
  • [232] Oosterom R, Święszkowski W, Bersee HEN. The dynamic coefficient of friction between UHMWPE and PMMA. Acta of Bioengineering and Biomechanics, 2003b: Vol. 5, Supl. 1: 353-357.
  • [233] Orr TE, Carter DR, Schurman DJ. Stress analyses of glenoid component designs. Clin Orthop., 1988; 232: 217-224.
  • [234] O’Shea TM, Miao X. Bilayered scaffolds for osteochondral tissue engineering. Tissue Eng Part B Rev. 2008 Dec; 14(4): 447-64.
  • [235] Pachence JM, Kohn J. Biodegradable Polymers in Principles of Tissue Engineering Second Edition edited by R. Lanza, R. Langer, J.P. Vacanti, Academic Press, 2000: 263-276.
  • [236] Pakiela Z. Mikrostrukturalne uwarunkowania właściwości mechanicznych nanokrystalicznych metali. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2008.
  • [237] Park J, Lakes RS (eds). Biomaterials: An Introduction, 3rd ed., Springer, 2007.
  • [238] Park K, Shalaby WSW, Park H. Biodegradable hydrogels for drug delivery TECHNOMIC Publishing Company, USA 1993.
  • [239] Park SH, Kim TG, Kim HC, Yang DY, Park TG. Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration. Acta Biomater. 2008 Sep; 4(5): 1198-207.
  • [240] Pfister A, Landers R, Laib A, Hübner U, Schmelzeisen R, Mülhaupt R. Biofunctional Rapid Prototyping for Tissue-Engineering Applications: 3D Bioplotting versus 3D Printing. Journal of Polymer Science: Part A: Polymer Chemistry, 2004; Vol. 42: 624-638.
  • [241] Pham QP, Sharma U, Mikos AG. Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules. 2006 Oct; 7(10): 2796-805.
  • [242] Pilaszkiewicz A, El Fray M, Swieszkowski W, Kurzydlowski KJ. Chemically and physically crosslinked poly(vinyl alcohol) hydrogels for cartilage repair. e-Polymers, 2005; No. P013.
  • [243] Pilliar RM, Lee JM, Maniatopoulos C. Observation on the effect of movement on bone in-growth into porous-surfaced implants. Clinical Orthopaedics and Related Research 1986; 208: 108-113.
  • [244] Prabhakaran PM, Venugopal J, Ramakrishna S. Electrospun nanostructured scaffolds for bone tissue engineering. Acta Biomaterialia, 2009; 5: 2884-2893.
  • [245] Prendergast PJ, Huiskes R, Soballe K. ESB Research Award 1996. Biophysical stimuli on cells during tissue differentiation at implant interfaces. J Biomech. 1997 Jun; 30(6): 539-48.
  • [246] Przybytniak G, Walo M, Święszkowski W. Modyfikacja radiacyjna poliestrów. Modyfikacja polimerów. Stan i Perspektywy w roku 2009. Oficyna Wydawnicza Politechniki Wrocławskiej, 2009.
  • [247] Puleo DA, Nanci A. Understanding and controlling the bone-implant interface. Biomaterials, 1999; 20: 2311-2321.
  • [248] Puppi D, Chiellini F, Piras AM. Chiellini E, Polymeric Materials for Bone and Cartilage Repair. Progress in Polymer Science, 2010, Vol. 35, Issue 4, 403-440.
  • [249] Quigley FP, Buggy M, Birkinshaw C. Selection of elastomeric materials for compliant-layered total hip arthroplasty. Proc Inst Mech Eng [H]. 2002, 216(1), 77-83.
  • [250] Raimondi MT, Sassi R, Pietrabissa R, A method for the evaluation of the change in volume of retrieved acetabular cups. Proc. Inst. Mech. Engrs., Part H, Journal of Engineering in Medicine, 2000; 214: 577.
  • [251] Ramakrishna S, Fujihara K, Teo W-E, Lim T-C, Ma Z. An introduction to Electrospinning and Nanofibers, World Scientific, 2005.
  • [252] Ramamurti BS, Orr TE, Bragdon CR, Lowenstein JD, Jasty M, Harris WH. Factors influencing stability at the interface between the porous surface and the cancellous bone: a finite element analysis of a canine in-vivo micromotion experiment. Journal of Biomedical Material Research, 1997; 36(2): 274-280.
  • [253] Redman SN, Oldfield SF, Archer CW. Current strategies for articular cartilage repair. European Cells and Materials, 2005; (9): 23-32.
  • [254] Repo RU, Finlay JB: Survival of articular cartilage after controlled impact. J Bone Joint Surg Am. 1977; 59: 1068-1075.
  • [255] Rockwood CA Jr, Wirth MA. Observation on retrieved Hylamer glenoids in shoulder arthroplasty: problems associated with sterilization by gamma irradiation in air. J Shoulder Elbow Surg. 2002 Mar-Apr; 11(2): 191-197.
  • [256] Rockwood CA, Matsen FA. III (eds.). The Shoulder. Philadelphia: WB Saunders, 1998.
  • [257] Roper BA, Paterson JM, Day WH. The Roper-Day total shoulder replacement. Journal of Bone and Joint Surgery, 1990; 72B(4): 694-697.
  • [258] Rostoker W, Galante JO. Contact pressure dependence of wear rates of ultra high molecular weight polyethylene. J. Biomed. Mater Res., 1979, 13(6), 957-964.
  • [259] Rubin CT, McLeod KJ. Promotion of bony ingrowth by frequency-specific, low-amplitude mechanical strain. Clin Orth. 1994; 298: 165-174.
  • [260] Rundell SA, Auerbach JD, Balderston RA, Kurtz SM. Total disc replacement positioning affects facet contact forces and vertebral body strains. Spine. 2008 Nov 1; 33(23): 2510-7.
  • [261] Russell S, Ingham H, Jin Z, Fisher J, Tipper J. Investigation of friction values of cartilage substitution biomaterials. Journal of Biomechanics. 2008, Volume 41, Pages S288-S288.
  • [262] Ryan GE, Pandit AS, Apatsidis DP. Porous titanium scaffolds fabricated using a rapid prototyping and powder metallurgy technique. Biomaterials 2008; 29: 3625-3635.
  • [263] Saikko VO. A three-axis hip joint simulator for wear and friction studies on total hip prostheses. Proc. Inst Mech. Engrs, Part H, Journal of Engineering in Medicine. 1996; 210(H3): 175-185.
  • [264] Salter DM. Cartilage. Current Orthopeadics. 1998; 12: 251-257.
  • [265] Sandino C, Planell JA, Lacroix D. A finite element study of mechanical stimuli in scaffolds or bone tissue engineering. Journal of Biomechanics, 2008; 41: 1005-1014.
  • [266] Santavirta S, Böhler M, Hams WH, Konttinen YT, Lappalainen R, Muratoglu O, Ricker C, Salzer M. Alternative materials to improve total hip replacement tribology. Acta Orthop Scand. 2003 Aug; 74(4): 380-8.
  • [267] Scarlat, MM and Matsen FA. 3rd. Observations on retrieved polyethylene glenoid components. J. Arthroplasty, 2001, 16(6), 795-801.
  • [268] Schaefer D, Martin I, Jundt G, Seidel J, Heberer M, Grodzinsky A, Bergin I, Vunjak-Novakovic G, Freed LE. Tissue-engineered composites for the repair of large osteochondral defects. Arthritis Rheum. 2002 Sep; 46(9): 2524-34.
  • [269] Schmalzried TP, Dorey FJ, McKellop H. The multifactorial nature of polyethylene wear in vivo. J. Bone Joint Surg. Am., 1998; 80(8): 1234-1242.
  • [270] Scholes SC, Unsworth A, Goldsmith AAJ. A frictional study of total hip joint replacements. Phys. Med. Biol., 2000; 45: 3721-3735.
  • [271] Semel FJ, Lados DA. Porosity analysis of PM materials by helium pycnometry. Powder metallurgy. 2006; 49(2): 173-182.
  • [272] Shahgaldi BF, Heatley FW, Dewar A, Corrin B. In vivo corrosion of cobalt-chromium and titanium wear particles. J Bone Joint Surg Br. 1995 Nov; 77(6): 962-6.
  • [273] Shao XX, Hutmacher DW, Ho ST, Goh JC, Lee EH. Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits. Biomaterials. 2006 Mar; 27(7): 1071-80.
  • [274] Sherwood JK, Riley SL, Palazzolo R, Brown SC, Monkhouse DC, Coates M, Griffith LG, Landeen LK, Ratcliffe A. A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials. 2002 Dec; 23(24): 4739-51.
  • [275] Shikinami Y. and Okuno M. Bioresorbable devices made of forged composites of hydroxyapatitc and poly L-lactide (PLLA): Part I. Basic characteristics. Biomaterials 1999, 20, 859 877.
  • [276] Siegel UJ. Baird RC 3rd, Hall J, Lopez-Ben R, Lander Pil. The outcome of composite bone graft substitute used to treat cavitary bone defects. Orthopedics. 2008 Aug; 31(8): 754.
  • [277] Sims CD, Butler PEM, Casanova R, Lee BT, Randolph MA, Lee WPA, Vacanti CA, Yaremchuk MJ. Injectable cartilage using polyethylene oxide polymer substrates. Plast Reconstr Surg 1996:98: 843-50.
  • [278] Sivakumar M, Mudali UK, Rajeswari S. Investigation of failures in stainless steel orthopaedic implant devices: pit-induced fatigue cracks. Journal of Materials Science Letters, 1995; Vol. 14, No 2: 148-151.
  • [279] Skirving AP. Total shoulder arthroplasty - current problems and possible solutions. J. Orthop Sci., 1999; 4(1): 42-53.
  • [280] Smith SL, Burgess IC, Unsworth A. Evaluation of a hip joint simulator. Proc. Inst Mech. Engrs. Part H, Journal of Engineering in Medicine, 1999; 213(H6): 469-473.
  • [281] Smith-Peterson MN. Evaluation of the mould arthoplasty of the hip joint. J Bone Jt Surg, 1948; 30B: 59.
  • [282] Soballe M, Hansen E, Brockstedt-Raumussen H, Bunger C. Gap healing enhanced by hydroxyapatitc coating. Clin Orthop, 1991; 272: 300-307.
  • [283] Sojbjerg JO, Frich LH, Johannsen HV, Sneppen O. Late results of total shoulder replacement in patients with rheumatoid arthritis. Clinical Orthopaedics and Related Research, 1999; 366: 39-45.
  • [284] Spinelli M, Affatato S, Corvi A, Viccconti M. Ceramic-on-ceramic vs. metal-on-metal in total hip arthroplasty (THA): do 36-mm diameters exhibit comparable wear performance? Materialwissenschaft und Werkstofftechnik. 2009; Volume 40; Issue 1-2: 94-97.
  • [285] Stammen JA, Williams S, Ku DN, Guldberg RE. Mechanical properties of a novel PVA cryogel in shear and unconfirmed compression. Biomaterials, 2001; 22: 799-806.
  • [286] Stan zdrowia ludności Polski w 2004 r. - Reprezentacyjne badanie ankietowe GUS. Warszawa 2006.
  • [287] Steinwachs MR, Guggi T, Kreuz PC. Marrow stimulation techniques. Injury. 2008 Apr; 39 Suppl. 1: S26-31.
  • [288] Stevens M.M. Biomaterials for bone tissue engineering. Materials Today, 2008; Volume 11, Issue 5: 18-25.
  • [289] Stewart T, Jin ZM, Fisher J. Friction of composite cushion bearings for total knee joint replacements under adverse lubrication conditions. Proc Inst Mech Eng [H]. 1997; 211(6): 451-65.
  • [290] Stewart T, Jin ZM, Fisher J. Analysis of contact mechanics for composite cushion knee joint replacements. Proc Inst Mech Eng [H]. 1998; 212(1): 1-10.
  • [291] Strozzi A. Analytical modelling of the elastomeric layer in soft layer hip replacements. Proc Inst Mech Eng [H]. 2000; 214(1): 69-81.
  • [292] Suominen E, Aho AJ, Vedel E, Kangasniemi I, Uusipaikka E, Yli-Urpo A. Subchondral bone and cartilage repair with bioactive glasses, hydroxyapatitc, and hydroxyapatitc-glass composite. J Biomed Mater Res. 1996 Dec; 32(4): 543-51.
  • [293] Swieszkowski W, Nano-włókna. Nano-materiały inżynierskie - konstrukcyjne i funkcjonalne. Red. K.J. Kurzydlowski, M. Lewandowska, PWN, Warszawa, 2010a (in print).
  • [294] Swieszkowski W, Bednarz P, Prendergast P. Contact stresses in the glenoid component in total shoulder arthroplasty, Proc. Inst Mech. Engrs, Part H, Journal of Engineering in Medicine, 2003a; 217(1): 49-57.
  • [295] Święszkowski W, Bednarz P, Bersee H, Prendergast PJ. Effect of joint conformity on poly-ethylene contact stresses in glenoid component under abduction loading. Acta of Bioengineering and Biomechanics, 2002a; Vol. 4, Supl. 1: 355.
  • [296] Święszkowski W, Bednarz P, Oosterom R, Prendergast PJ. How design parameters influence contact stresses of the glenoid component. Proceed. 4th Meeting of the International Shoulder Group, Cleveland, USA, 17-18 June 2002b: 52-55.
  • [297] Swieszkowski W, Bersee H. Kurzydlowski KJ. Effect of the design parameters on the in vitro wear performance of total shoulder arthroplasty. J. Materials Science and Engineering C. 2010b (in print).
  • [298] Swieszkowski W, Bersee HEN, Kurzydlowski KJ. Experimental and numerical investigation of wear in the total shoulder arthroplasty. Journal of Biomechanics , 2006a; Volume: 39, Supplement 1: S143.
  • [299] Swieszkowski W, El Fray M. Kurzydlowski KJ. Biomaterials for cartilage reconstruction and repair. In Handbook of Fabrication and Processing of Biomaterials, edited by Paul K. Chu and Xuanyong Liu. CRC Press/Taylor and Francis Group. 2008.
  • [300] Swieszkowski W, Figurska M, Bersee HEN, Kurzydlowski KJ. In vivo degradation and wear of biomaterials in total joint replacement. in Biomaterials in Orthopeadic Practice (eds. T. Lekszycki and P. Maldyk), 2005a: 97-115.
  • [301] Swieszkowski W, Frankle M, Bersee HEN, Kurzydlowski KJ. In vivo wear of polyethylene glenoid components in total shoulder arthroplasty. e-Polymers, 2005b; No. 012.
  • [302] Swieszkowski W, Ho Saey Tuan B., Kurzydlowski KJ, Hutmacher DW. Repair and regeneration of osteochondral defects in the articular joints. Biomolecular Engineering, 2007 Nov; 24(5): 489-95.
  • [303] Swieszkowski W, Jaegermann Z, Hutmacher D.W., Kurzydlowski KJ. Ceramic materials for bone tissue replacement and regeneration. In Ceramic Materials and Components for Energy and Environmental Applications: Ceramic Transactions Volume 210. Edited by Dongliang Jiang. Yuping Zeng, Mrityunjay Singh, Juergen Heinrich, April 2010c. (in print).
  • [304] Święszkowski W, Ku D, Bersee H, Kurzydlowski KJ. An elastic material for cartilage replacement in anhritic shoulder joint. Biomaterials. 2006b; 27: 1534-1541.
  • [305] Swieszkowski W, Ku D, Kurzydlowski KJ. A high potential of using hydrogel materials for cartilage replacement in arthritic shoulder joint. The Journal of Artificial Organs. 2005c; Vol. 28(4): 414-415.
  • [306] Święszkowski W, Kurzydlowski KJ, Bersee HEN. A new polymeric material for total shoulder replacements - numerical analysis. Acta of Bioengineering and Biomechanics, 2004; Vol. 6, Supl. 1: 353-357.
  • [307] Swieszkowski W, Kurzydlowski KJ. Numerical modeling in the design and evaluation of scaffolds for orthopaedic applications. In Computer-Aided Tissue Engineering, Eds. Michael A. K. Liebsehner MAK, Kim DH, Humana Press, 2010d (in print).
  • [308] Święszkowski W, Oosterom R, Bersee H, Beukers A. Cartilage and subchondral bone as a composite structure. Proceed. 13th International Conference on Composite Materials (ICCM-13), 2001a, Beijing, Chine, ID-1493: 1-7.
  • [309] Święszkowski W, Oosterom R, Bersee H, Beukers A. Polymer in shoulder joint replacements: current status and future perspective. Proceed. NATO/ASI Course: Poylmer based systems on tissue engineering, replacement and regeneration, Alvor, Portugal, 15-25 October 2001b: 2-3.
  • [310] Święszkowski W, Oosterom R, Bersee H, van der Helm FCT. Shoulder arthroplasty: design, results and future perspective. Acta of Bioengineering and Biomechanics, 2001c; Vol. 3. Supl. 2: 513-520.
  • [311] Swieszkowski W, Tomaszewski W, Wagner D, Kurzydlowski KJ, Wesolowska E, Ainola M, Sui Xiaomeng, Konttinen YT. Hybrid scaffold for cartilage regeneration. Proceedings of 2nd Workshop on Biotribology-Bridging Engineering and Medicine. Guimaraes, 25-27 May, 2009, 44.
  • [312] Święszkowski W, van der Pijl AJ, Oosterom R, Bersee HEN, Beukers A. Shoulder wear simulator for investigation of wear of glenoid component. Proceed. 14th International Conference on Composite Materials (ICCM-14), July 14-18. 2003b, San Diego, CA, USA, ID-1606: 1-7.
  • [313] Święszkowski W, van der Pijl AJ, Bersee HEN. Wear simulator for in vitro shoulder prostheses testing. Acta of Bioengineering and Biomechanics, 2003c; Vol. 5, Supl. 1, 489-494.
  • [314] Takahashi Y, Tabata Y. Effect of the fiber diameter and porosity of non-woven PET fabrics on the osteogenic differentiation of mesenchymal stem cells. J Biomater Sci Polym Ed. 2004; 15(1): 41-57.
  • [315] Temenoff JS, Mikos AG. Review: tissue engineering for regeneration of articular cartilage. Biomaterials, Volume: 21, Issue: 5, March, 2000, 431-440.
  • [316] Teoh SH. Fatigue of biomaterials: a review International Journal of Fatigue, 2000; Vol. 22, Issue 10: 825-837.
  • [317] Theron A, Zussman E, Yarin AL. Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology, 2001; 12: 384-390.
  • [318] Thomas BH, Frymana JC, Liua K, Masona J. Journal of the Mechanical Behavior of Biomedical Materials, 2009, Volume 2, Issue 6: 588-595.
  • [319] Thomas J, Lowman A, Marcolongo M. Novel associated hydrogels for nucleus pulposus replacement. J Biomed Mater Res A. 2003 Dec 15; 67(4): 1329-37.
  • [320] Tognana E, Borrione A, De Luca C, Pavesio A. Hyalograft C: hyaluronan-based scaffolds in tissue-engineered cartilage. Cells Tissues Organs. 2007; 186(2): 97-103.
  • [321] Torchia ME, Cofield RH, Settergren CR. Total shoulder arthroplasty with the Neer prosthesis: long-term results. J Shoulder Elbow Surg, 1997; 6(6): 495-505.
  • [322] Torzilli PA, Grigiene R, Borrelli J Jr, Helfet DL. Effect of impact load on articular cartilage: cell metabolism and viability, and matrix water content. J Biomech Eng 1999; 121: 433-41.
  • [323] Unsworth A, Roberts B, Thompson JC. The application of soft layer lubrication to the hip prostheses. J Bone Jt Surg, 1981; 63B: 297.
  • [324] Unsworth A. Recent developments in tribology of artificial joints. Tribology International. 1995; 28(7): 485-495.
  • [325] Unsworth A, Strozzi A. Axisymmetric finite element analysis of hip replacements possessing an elastomeric layer: the effects of clearance and Poisson’s ratio. Proc Inst Mech Eng [H]. 1995; 209(1): 59-64.
  • [326] Ushio K, Oka M, Hyon SH, Hayami T, Yura S, Matsumura K, Toguchida J, Nakamura T. Attachment of artificial cartilage to underlying bone. J Biomed Mater Res B Appl Biomater. 2004 Jan 15; 68(1): 59-68.
  • [327] Vallet-Regi M, Gonzalez-Calbet JM. Calcium phosphates assubstitution of bone tissues. Progress in Solid State Chemistry. 2008; 32: 1-31.
  • [328] Van Blitterswijk CA, van den Brink J, Leenders H, Bakker D. The effect of PEO ratio on degradation, calcification and bone-bonding of PEO/PBT copolymer (Polyactive). Cells Mater 1993; (3): 23-36.
  • [329] Van der Helm FCT. Analysis of the kinematic and dynamic behavior of the shoulder mechanism. J. Biomechanics, 1994; 27(5): 527-550.
  • [330] van der Meulen MCH, Huiskes R. Why mechanobiology? A survey article. Journal of Biomechanics 2002; 35: 401-414.
  • [331] van der Pijl AJ, Święszkowski W, Bersee HEN. Design of a wear simulator for in vitro shoulder prostheses testing. Experimental Techniques. 2004.
  • [332] Vasita R and Katti DS. Nanofibers and their applications in tissue engineering. Int J Nanomedicine. 2006 March; 1(1): 15-30.
  • [333] Verdonschot N, Huiskes R. Cement debonding process of total hip arthroplasty stems. Clin Orthop Relat Res. 1997 Mar; (336): 297-307.
  • [334] Vinatier C, Mrugala D, Jorgensen C, Guicheux J, Noël D. Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol. 2009 May; 27(5): 307-14.
  • [335] Virtanen S, Milosev I, Gomez-Barrena E, Trebse R, Salo J, Konttinen YT. Special modes of corrosion under physiological and simulated physiological conditions. Acta Biomater. 2008 May; 4(3): 468-76.
  • [336] Wallace AL, Phillips RL, MacDougal GA, Walsh WR, Sonnabend DH. Resurfacing of the glenoid in total shoulder arthroplasty. A comparison, at a mean of five years, of prostheses inserted with and without cement. J Bone Joint Surg Am. 1999 Apr; 81(4): 510-8.
  • [337] Walo M, Przybytniak G, Nowicki A, Święszkowski W. Radiation-induced effects in gamma-irradiated PLLA and PCL at ambient and dry ice temperatures. Journal of Applied Polymer Science. 2010 (Submitted).
  • [338] Wang A, Essner A, Klein R. Effect of contact stress on friction and wear of ultra-high molecular weight polyethylene in total hip replacement. Proc Inst Mech Eng [H]. 2001; 215(2): 133-9.
  • [339] Wang K. The use of titanium for medical applications in the USA. Materials Science & Engineering A. 1996; Volume: 213, Issue: 1-2: 134-137.
  • [340] Wang X, Grogan SP, Rieser F, Winkelmann V, Maquet V, Berge ML, Mainil-Varlet P. Tissue engineering of biphasic cartilage constructs using various biodegradable scaffolds: an in vitro study. Biomaterials. 2004 Aug; 25(17): 3681-8.
  • [341] Wang X, Ni Q. Determination of cortical bone porosity and pore size distribution using a low field pulsed NMR approach, Journal of Orthopaedic Research, 2003; 21: 312-319.
  • [342] Warnke PH, Douglas T, Wollny P, Sherry E, Steiner M, Galonska S, Becker ST, Springer IN, Wiltfang J, Sivananthan S. Rapid prototyping: Porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering. Tissue engineering part c: Methods, 2009; 15(2): 115-124.
  • [343] Weldon EJ 3rd, Scarlat MM, Lee SB, Matsen FA 3rd. Intrinsic stability of unused and retrieved polyethylene glenoid components. J Shoulder Elbow Surg. 2001 Sep-Oct; 10(5): 474-81.
  • [344] Wettergreen MA, Bucklen BS, Starly B, Yuksel E, Sun W, Liebschner MAK. Creation of a unit block library of architectures for use in assembled scaffold engineering. Computer-Aided Design 2005; 37: 1141-1149.
  • [345] Wierzchon T, Charnowska E, Krupa D. Inżynieria powierzchni w wytwarzaniu biomaterialów tytanowych. Oficyna Wydawnicza Politechniki Warszawskiej. Warszawa, 2004.
  • [346] Williams DF. On the nature of biomaterials. Biomaterials. 2009 Oct; 30(30): 5897-909.
  • [347] Williams III RJ. (eds). Cartilage repair strategies. 2007. Humana Press Inc.
  • [348] Williams RJ, Gamradt SC. Articular cartilage repair using a resorbable matrix scaffold. Instr Course Lect. 2008; 57: 563-71.
  • [349] Wirth MA, Agrawal CM, Mabrey JD, Dean DD, Blanchard CR, Miller MA, Rockwood CA Jr. Isolation and characterization of polyethylene wear debris associated with osteolysis following total shoulder arthroplasty. J Bone Joint Surg Am. 1999 Jan; 81(1): 29 37.
  • [350] Wirth MA, Klotz C, Deffenbaugh DL, McNulty D, Richards L, Tipper JL. Cross-linked glenoid prosthesis: a wear comparison to conventional glenoid prosthesis with wear particulate analysis. J Shoulder Elbow Surg. 2009 Jan-Feb; 18(1): 130-7.
  • [351] Wirth N. Algorithms + Data structures = Programs. Prentice-Hall, Inc. Englewood Cliffs, 1975.
  • [352] Wirth MA, Rockwood CA. Jr. Complications of shoulder arthroplasty. Clin.Orthop., 1994; 307: 47-69.
  • [353] Wright TM, Bartel DL, Rimnac CM. Surface damage in polyethylene joint components. In Proceedings of IMechE International Conferenee on The changing role of engineering in orthopaedics., 14-15 April 1989. 187-192, Institution of Mechanical Engineers, Birdcage Walk, London.
  • [354] Wu L, Ding J. In vitro degradation of three-dimensional porous poly(D,L-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 2004; 25: 5821-5830.
  • [355] Xian CJ, Foster BK. Repair of injured articular and growth plate cartilage using mesenchymal stem cells and chondrogenic gene therapy. Curr Stent Cell Res Ther. 2006 May; 1(2): 213-29.
  • [356] Xue W, Vamsi Krishna B, Bandyopadhyay A, Bose S. Processing and biocompatibility evaluation of laser processed porous titanium. Acta Biomaterialia 2007; 3: 1007-1018.
  • [357] Yang J, Wan Y, Tu Ch, Cai Q, Bei J, Wang S. Enhancing the cell affinity of macroporous poly(L-lactide) cell scaffold by a convenient surface modification method. Polym Int. 2003; 52: 1892-1899.
  • [358] Yang ZJ, Yuan HP, Tong WD, Zou P, Chen WQ, Zhang D. Osteogenesis in extraskeletally implanted porous calcium phosphate ceramics: variability among different kinds of animals. Biomaterials. 1996; 17:2131-2137.
  • [359] Yao JQ, Parry TV, Unsworth A. Contact mechanics of soft layer artificial hip joints. Part 2: application to joint design. Proc Inst Mech Eng [H]. 1994; 208(3): 206-215.
  • [360] Yeoh OH. Charaeterization of elastic properties of carbon-black filled rubber vulcanizates. Rubber Chem. Technol. 1990; 63: 792-805.
  • [361] Zardiackas LD, Parsell DE, Dillon LD, Mitchell DW, Nunnery LA, Poggie R. Structure, metallurgy, and mechanical properties of a porous tantalum foam. Journal of Biomedical Material Research, 2001; 58: 180-187.
  • [362] Zein I, Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials, 2002; 23: 1169-1185.
  • [363] Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater. 2005 Jan 15; 72(1): 156-65.
  • [364] Zhao K, Deng Y, Chen JCh, Chen GQ. Polyhydroxyalkanoate (PMA) scaffolds with good mechanical properties and biocompatibility. Biomaterials, 2003; 24: 1041-1045.
  • [365] Zheng-Qiu G, Jiu-Mei X, Xiang-Hong Z. The development of artifcial articular cartilage - PVA-hydrogel. Biomed Mater Engng 1998; 8: 75-81.
  • [366] Zhou YF, Hutmacher DW, Varawan SL, Lim TM. In vitro bone engineering based on poly-caprolactone and polycaprolactone-tricalcium phosphate composites. Polym Int 2007 Mar; 56(3): 333-342.
  • [367] Zienkiewicz OC, Taylor RJ (eds.). Finite element method. Butterworth Heinemann. 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-PWA9-0042-0039
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.