PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analiza chodu człowieka w aspekcie jego stabilności oraz wytrzymałości wybranych elementów kończyny dolnej

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
W większości definicji biomechaniki jako temat wiodący przewija się ruch człowieka i zwierząt. Świadczy to o jego wielkim znaczeniu dla funkcjonowania organizmów żywych, a jednocześnie wskazuje na potrzebę ciągłych badań nad jego pełnym poznaniem. Chód jest jednym z najważniejszych i najczęściej spotykanych rodzajów ruchu człowieka. Mimo wielu lat intensywnych badań ciągle jeszcze nasza wiedza na temat tej formy przemieszczania się jest niepełna, zaś metody i urządzenia służące do jej analizy są stale rozwijane i udoskonalane. W prezentowanej pracy można wyróżnić dwie podstawowe części, których motywem przewodnim jest chód człowieka. W pierwszej części (rozdział 4) skoncentrowano się na analizie stabilności chodu normalnego, będącego podstawą wszelkich badań porównawczych w zakresie lokomocji dwunożnej oraz patologii układu ruchu. Najpowszechniej obecnie stosowana, znana od kilkudziesięciu lat, metoda oceny stabilności zarówno posturalnej, jak i lokomocyjnej, wykorzystuje platformy dynamometryczne pozwalające uzyskać informacje na temat środka nacisku stóp na podłoże i jego przemieszczeń. Ma ona jednak pewne wady i ograniczenia, nie daje na przykład pełnej wiedzy na temat parametrów kinematycznych chodu. Zaproponowana w tej pracy procedura badawcza łączy w sobie znaną metodę optoelektronicznej rejestracji trajektorii wybranych punktów ciała idącej osoby z kryteriami stabilności wykorzystywanymi przy projektowaniu dwunożnych robotów kroczących. Testy przeprowadzone przy użyciu dwóch kamer cyfrowych i bieżni o regulowanej prędkości przesuwu dowodzą, że nawet tak prosty system daje satysfakcjonujące rezultaty i może być z powodzeniem stosowany w ośrodkach badawczych i rehabilitacyjnych, niedysponujących bogatym wyposażeniem sprzętowym ani znacznymi środkami finansowymi. Druga część pracy (rozdział 5) przedstawia badania naprężeń wybranych fragmentów kośćca kończyny dolnej, których obciążenia są zdeterminowane głównie przez siły dynamiczne generowane podczas chodu. Analizie poddano kość miedniczną, szyjkę kości udowej oraz kości goleni. Na podstawie symulacji numerycznych prowadzonych przy użyciu metody elementów skończonych uzyskano szereg informacji na temat wielkości i rozkładu naprężeń badanych struktur, a także miejsc krytycznych z punktu widzenia ich wytrzymałości. Obliczenia były wykonywane dla różnych konfiguracji parametrów kontrolnych, co pozwoliło m.in. na określenie krytycznej wartości kąta szyjkowo-trzonowego, ocenę wpływu sprawności mięśni na stan pracy szyjki kości udowej czy też zmian w naprężeniach kości piszczelowej przy uszkodzonej strzałce.
EN
In most definitions of biomechanics as a leading subject, the movement of man and animals appears. This demonstrates its great importance for the functioning of living organisms, and also indicates the need for continuing research on his full knowledge. Walking is one of the most important and most common types of human movement. Despite many years of intensive research, our knowledge of this form of movement is still incomplete, and the methods and devices for the analysis are constantly being developed and refined. In presented study, there can be distinguished two basic parts, in which the leading theme is gait of human. The first part (chapter 4) focuses on the analysis of the stability of the normal gait, which is the basis for any comparative study of bipedal locomotion and the pathology of the musculoskeletal system. The most popular method for evaluating both postural and locomotive stabilities, known for several decades, use the dynamometric platforms to obtain information about the foot center of pressure and its displacement. However, it has some drawbacks and limitations, for example, it does not give full knowledge of the kinematic parameters of gait. Procedure proposed in this treatise combines the well-known method for optoelectronic recording the trajectory of the selected points of the walking person's body with the stability criteria used in the design of bipedal walking robots. Tests carried out using two amateur digital cameras and variable speed treadmill shift shows that even such a simple system gives satisfactory results and can be successfully used in research centers and rehabilitation facilities not yet have extensive hardware or significant financial resources. Second part of the treatise (chapter 5) presents the stress study of selected elements of lower limb bones' skeleton, which loads are determined mainly by the dynamic forces generated during gait. The analysis was performed on the pelvic bone, femoral neck and shin bones. Based on numerical simulations executed using the finite element method, there was obtained some information on the size and distribution of the stress test structures, as well as critical areas from the standpoint of their strength. The calculations were carried out for different configurations of the controlled parameters, which allowed, inter alia to determine the critical values of the femoral neck-shaft angle, assessing the impact of the muscles efficiency on the femoral neck status or changes in the stress of the tibial bone at the damaged fibula.
Rocznik
Tom
Strony
1--155
Opis fizyczny
Bibliogr. 203 poz.
Twórcy
autor
  • Wydział Mechaniczny Politechniki Łódzkiej
Bibliografia
  • 1. Ackermann M., van den Bogert A.J., Optimality principles for model-based prediction of human gait. Journal of Biomechanics, 43(6): 1055-1060, 2010.
  • 2. Adamczewski I., Fizyka medyczna i elementy biofizyki, Państwowy Zakład Wydawnictw Lekarskich, Warszawa, 1967.
  • 3. Aggarwal J.K., Cai Q., Human motion analysis, IEEE Nonrigid and Articulated Motion Workshop, San Juan, Puerto Rico, 1997.
  • 4. Anderson F.C., Pandy M.G., Dynamic optimization of human walking. Journal of Biomechanical Engineering 123, pp. 381-390, 2001.
  • 5. Arantes M., Gonzaga A., Human gait recognition using extraction and fusion of global motion features. Multimedia Tools and Applications, 55(3): 655-675, 2011.
  • 6. Arnold E.M., Delp S.L., Fibre operating lengths of human lower limb muscles during walking. Philosophical Transactions of the Royal Society B-Biological Sciences, 366(1570): 1530-1539, 2011.
  • 7. Ayabe M., Aoki J., Kumahara H., Tanaka, H. Assessment of minute-by-minute stepping rate of physical activity under free-living conditions in female adults. Gait & Posture, 34(2): 292-294, 2011.
  • 8. Badarski J., Osteoporoza, Państwowy Zakład Wydawnictw Lekarskich, Warszawa, 1981.
  • 9. Baldassarri S., Seron F., Coordinated System for Real Time Muscle Deformation during Locomotion. Journal of Universal Computer Science, 17(3): 349-376, 2011.
  • 10. Barham J.N., Mechanical Kinesiology, C.V. Mosby, Saint Louis, 1978.
  • 11. Barry M., Grünerbl A., Lukowicz P., Wearable joint-angle measurement with modulated magnetic field from L/C oscillators. 14th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007). IFMBE Proceedings 13, 43-48, 2007.
  • 12. Bastien G.J., Willems P.A., Schepens B., Heglund N.C., Effect of load and speed on the energetic cost of human walking. European Journal of Applied Physiology 94, pp. 76-83, 2005.
  • 13. Bechard D.J., Birmingham T.B., Zecevic A.A., Jenkyn T.R., Time-varying behaviour, test-retest reliability and concurrent validity of lateral trunk lean and toe-out angles during prolonged treadmill walking. Gait & Posture, 34(1): 81-85, 2011.
  • 14. Bennett B.C., Russell S.D., Sheth P., Abel M.F., Angular momentum of walking at different speeds. Human Movement Science, 29(1): 114-124, 2010.
  • 15. Bergman G., Graichen F., Rohlmann A., Hip joint loading during walking and running, measured in two patients. Journal of Biomechanics, 26 (8), 969-990, 1993.
  • 16. Bertolini R., Leutert G., Atlas anatomii człowieka, Drukarnia Pomursk Tisk, Murska Sobota, 1987.
  • 17. Bessonnet G., Marot J., Seguin P., Sardain P., Parametric-based dynamic synthesis of 3D-gait. Robotica, 28: 563-581, 2010.
  • 18. Będziński R., Biomechanika inżynierska – zagadnienia wybrane, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 1997.
  • 19. Będziński R., Kędzior K., Kiwerski J., Morecki A., Skalski K., Wall A., Wit A., Biomechanika i inżynieria rehabilitacyjna. T. 5 serii „Biocybernetyka i Inżynieria Biomedyczna 2000”, Akademicka Oficyna Wydawnicza Exit, Warszawa, 2004.
  • 20. Będziński R., Rusiński E., Badania przemieszczeń i odkształceń kości udowej, Zeszyty naukowe Politechniki Śląskiej, Seria: Mechanika z. 112.
  • 21. Będziński R., Ścigała K., Physical and numerical models of the tibia bone, 12th Conference of the European Society of Biomechanics, Dublin, 2000.
  • 22. Bilro L., Oliveira J.G., Pinto J.L., Nogueira R.N., A reliable low-cost wireless and wearable gait monitoring system based on a plastic optical fibre sensor. Measurement Science & Technology, 22(4), 2011.
  • 23. Birrell S.A., Haslam R.A., The effect of load distribution within military load carriage systems on the kinetics of human gait. Applied Ergonomics, 41(4): 585-590, 2010.
  • 24. Blajer W., Czaplicki A., Dziewiecki K., Mazur Z., Influence of selected modeling and computational issues on muscle force estimates. Multibody System Dynamics, 24(4): 473-492, 2010.
  • 25. Błaszczyk J.W., Biomechanika kliniczna. Podręcznik dla studentów medycyny i fizykoterapii, Wydawnictwo Lekarskie PZWL, Warszawa, 2004.
  • 26. Bober T., Biomechanika chodu i biegu, Akademia Wychowania Fizycznego we Wrocławiu, Wrocław, 1985.
  • 27. Bober T., Biomechanika. Wybrane zagadnienia, Akademia Wychowania Fizycznego we Wrocławiu, Wrocław, 1990.
  • 28. Bober T., Zawadzki J., Biomechanika układu ruchu człowieka, Wydawnictwo BK, Wrocław, 2001.
  • 29. Bochenek A., Reicher M., Anatomia człowieka, t. I. Państwowy Zakład Wydawnictw Lekarskich, Warszawa, 1990.
  • 30. Bochenek A., Reicher M., Anatomia człowieka, t. II. PZWL, Warszawa, 1997.
  • 31. Bojanic D.M., Petrovacki-Balj B.D., Jorgovanovic N.D., Ilic V.R., Quantification of dynamic EMG patterns during gait in children with cerebral palsy. Journal of Neuroscience Methods 198(2), 325-331, 2011.
  • 32. Boonpratatong A., Ren L., The Human Ankle-Foot Complex as a Multi-Configurable Mechanism during the Stance Phase of Walking. Journal of Bionic Engineering, 7(3): 211-218, 2010.
  • 33. Boutin L., Eon A., Zeghloul S., Lacouture P., From human motion capture to humanoid locomotion imitation Application to the robots HRP-2 and HOAP-3. Robotica, 29: 325-334, 2011.
  • 34. Brauer D., Seidel H., Time Series Analysis of Postural Sway. Agressologie, 20, B:111-112, 1979.
  • 35. Braune C.W., Fischer O., The center of gravity of the human body as related to the equipment of the German infantryman (in German), Treat. of the Math.-Phys. Class of the Royal Acad. of Sc. of Saxony, 26, 1889.
  • 36. Braune C.W., Fischer O., Der Gang des Menschen, Königlich Sächsische Gesellschaft der Wissenschaften, Leipzig, cz. I – 1895, cz. II – 1899.
  • 37. Briand D., Bonnel F., Adaptation morphologiques ? la marche bip?de dans l'échelle animale, w „La marche humaine et sa pathologie”, 6-9, Masson, Paris, 1994.
  • 38. Bruijn S.M., Meijer O.G., Beek P.J., van Dieen J.H., The effects of arm swing on human gait stability. Journal of Experimental Biology, 213(23): 3945-3952, 2010.
  • 39. Brzózka J., Dobroczyński L., Programowanie w MATLAB, MIKOM, Warszawa, 1998.
  • 40. Burczyński T., John A., Kuś W., Orantek P., Poteralski A., Identification of material coefficients in human pelvic bone with use of evolutionary algorithm and hipersurface, 1st CEACM Conference on Computational Mechanics, 15th International Conference on Computer Methods in Mechanics CMM 2003, Wisła, 2003.
  • 41. Caballero R., Armada M., Sanchez V., Extending ZMP to a segment using reduced order biped model, 1998.
  • 42. Cappellini G., Ivanenko Y.P., Poppele R.E., Lacquaniti F., Motor patterns in human walking and running. Journal of Neurophysiology 95 pp. 3426-3437, 2006.
  • 43. Chen S.C., Hsieh H.J., Lu T.W., Tseng C.H., A method for estimating subject-specific body segment inertial parameters in human movement analysis. Gait & Posture, 33(4): 695-700, 2011.
  • 44. Chumanov E.S., Heiderscheit B.C., Thelen D.G., Hamstring Musculotendon Dynamics during Stance and Swing Phases of High-Speed Running. Medicine and Science in Sports and Exercise, 43(3): 525-532, 2011.
  • 45. Clark A.J., Higham T.E., Slipping, sliding and stability: locomotor strategies for overcoming low-friction surfaces. Journal of Experimental Biology, 214(8): 1369-1378, 2011.
  • 46. Correa T.A., Baker R., Graham H.K., Pandy M.G., Accuracy of generic musculoskeletal models in predicting the functional roles of muscles in human gait. Journal of Biomechanics, 44(11): 2096-2105, 2011.
  • 47. Correa T.A., Crossley K.M., Kim H.J., Pandy M.G., Contributions of individual muscles to hip joint contact force in normal walking. Journal of Biomechanics, 43(8): 1618-1622, 2010.
  • 48. Cretual A., Fusco N., Additional energetic cost due to belt speed variations when walking on a treadmill. Journal of Electromyography and Kinesiology, 21(3): 551-556, 2011.
  • 49. Crowninshield R.D., Brand R.A., A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics, 14, 793-801, 1981.
  • 50. Dalstra M., Huiskes R., Load transfer across the pelvic bone. Journal of Biomechanics, 28, 715-724, 1995.
  • 51. Damavandi M., Dixon P.C., Pearsall D.J., Kinematic adaptations of the hindfoot, forefoot, and hallux during cross-slope walking. Gait & Posture, 32(3): 411-415, 2010.
  • 52. Damavandi M., Stylianides G., Farahpour N., Allard P., Head and Trunk Segment Moments of Inertia Estimation Using Angular Momentum Technique: Validity and Sensitivity Analysis. IEEE Transactions on Biomedical Engineering, 58(5): 1278-1285, 2011.
  • 53. Dempster W.T., Gaughran G.R.L., Properties of body segments based on size and weight. American Journal of Anatomy, 120, 33-54, 1967.
  • 54. Dessery Y., Barbier F., Gillet C., Corbeil, P., Does lower limb preference influence gait initiation? Gait & Posture, 33(4): 550-555, 2011.
  • 55. De Stefano A., Burridge J.H., Yule V.T., Allen R., Effect of gait cycle selection on EMG analysis during walking in adults and children with gait pathology. Gait & Posture 20(1), 92-101, 2004.
  • 56. Dicharry J., Kinematics and Kinetics of Gait: From Lab to Clinic. Clinics in Sports Medicine, 29(3), 2010.
  • 57. Duprey S., Cheze L., Dumas R., Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization. Journal of Biomechanics, 43(14): 2858-2862, 2010.
  • 58. Erdmann W.S. (red.), Lokomocja człowieka – Materiały pokonferencyjne, 1998.
  • 59. Francois M., Morice A.H.P., Bootsma R.J., Montagne G., Visual control of walking velocity. Neuroscience Research, 70(2): 214-219, 2011.
  • 60. Frańczak B., Rozprawa habilitacyjna: Badania metod leczenia operacyjnego złamań krętarzowych kości udowej z zastosowaniem do zespolenia kości płytek kątowych oraz nowo wprowadzonych do leczenia gwoździ śródszpikowych na podstawie badań klinicznych i doświadczalnych. Kraków, 1994.
  • 61. Gaździk T.S., Ortopedia i traumatologia. Państwowy Zakład Wydawnictw Lekarskich, Warszawa, 1998.
  • 62. Gedliczka A., Atlas miar człowieka. CIOP, Warszawa, 2001.
  • 63. Gordon D., Robertson E., Introduction to biomechanics for human motion analysis. Waterloo Biomechanics, 2004.
  • 64. Goswami A., Postural stability of biped robots and the foot rotation indicator (FRI) point. International Journal of Robotics Research, 18(6), 523-533, 1999.
  • 65. Gravano S., Ivanenko Y.P., Maccioni G., Macellari, V., Poppele R.E., Lacquaniti F., A novel approach to mechanical foot stimulation during human locomotion under body weight support. Human Movement Science, 30(2): 352-367, 2011.
  • 66. Guo Q., Macnab C.J.B., Pieper J.K., Generating efficient rigid biped running gaits with calculated take-off velocities. Robotica, 29: 627-640, 2011.
  • 67. Haddad J.M., van Emmerik R.E.A., Wheat J.S., Hamill J., Snapp-Childs W., Relative Phase Coordination Analysis in the Assessment of Dynamic Gait Symmetry. Journal of Applied Biomechanics, 26(1): 109-113, 2010.
  • 68. Hamner S.R., Seth A., Delp S.L., Muscle contributions to propulsion and support during running. Journal of Biomechanics, 43(14): 2709-2716, 2010.
  • 69. Han Y.L., Wang X.S., The biomechanical study of lower limb during human walking. Science China-Technological Sciences, 54(4): 983-991, 2011.
  • 70. Hanna J.B., Schmitt D., Locomotor Energetics in Primates: Gait mechanics and their relationship to the energetics of vertical and horizontal locomotion. American Journal of Physical Anthropology, 145(1): 43-54, 2011.
  • 71. Harless E., The Static Moments of Human Limbs, Treatises of the Math-Phys Class of the Royal Academy of Sciences of Bavaria, 8, 257-294, 1860.
  • 72. Heinz F., Ilustrowany słownik międzynarodowego mianownictwa anatomicznego. PZWL, Warszawa, 1986.
  • 73. Hirai K., Hirose M., Haikawa Y., Takenaka T., The development of Honda humanoid robot, 1998.
  • 74. Hof A.L., Vermerris S.M., Gjaltema W.A., Balance responses to lateral perturbations in human treadmill walking. Journal of Experimental Biology, 213(15): 2655-2664, 2010.
  • 75. Ignatowski J., Fizjopatologiczne podstawy leczenia oddzielania się głowy kości udowej, Pomorska Akademia Medycyny w Szczecinie, Szczecin, 1959.
  • 76. Ivanenko Y.P., Dominici N., Daprati E., Nico D., Cappellini G., Lacquaniti F., Locomotor body scheme. Human Movement Science, 30(2): 341-351, 2011.
  • 77. John A., Identyfikacja i analiza parametrów geometrycznych i mechanicznych kości miednicznej człowieka, Praca habilitacyjna, Politechnika Śląska, 2004.
  • 78. John A., Kuś W., Orantek P., Wpływ stałych materiałowych na rozkład naprężeń i przemieszczeń w modelu warstwowym kości miednicy człowieka. Rzeszów, 2002.
  • 79. John A., Orantek P., Computer aided creation of numerical model of human pelvic bone. Silesian University of Technology. Polanica, 1999.
  • 80. Judet R., Judet J., Letournel E., Fractures of the acetabulum: classification and surgical approaches for open reduction, Journal of Bone and Joint Surgery, 46A:1615-1638, 1964.
  • 81. Kabsch A., Kliniczna ocena chodu, Katedra Biomechaniki i Kinezyterapii, AWF Poznań, http://cenlok.pl//downloads/lok1998/05.pdf
  • 82. Kalewski A., Pieliński M., Traumatologia narządów ruchu, Państwowy Zakład Wydawnictw Lekarskich, Warszawa, 1978.
  • 83. Kapandji I.A., The physiology of the joint, Vol. 2, Lower limb, London, 1987.
  • 84. Kim J.Y., Kim Y.S., Human-Like Gait Generation for Biped Android Robot Using Motion Capture and Zmp Measurement System. International Journal of Humanoid Robotics, 7(4): 511-534, 2010.
  • 85. Kim J.Y., Kim Y.S., Development of motion capture system using dual video cameras for the gait design of a biped robot. International Journal of Humanoid Robotics, 8(2): 275-299, 2011.
  • 86. Kim S., Mazumder M.M.G., Park S.J., Uncertainty analysis of 3D motion data available from motion analysis system. International Journal of the Physical Sciences, 5(7): 1191-1199, 2010.
  • 87. Kim S., Park S., Leg stiffness increases with speed to modulate gait frequency and propulsion energy. Journal of Biomechanics, 44(7): 1253-1258, 2011.
  • 88. Kirkwood R.N., Moreira B.D., Vallone M.L.D.C., Mingoti S.A., Dias R.C., Sampaio R.F., Step length appears to be a strong discriminates gait parameter for elderly females highly concerned about falls: a cross-sectional observational study. Physiotherapy, 97(2): 126-131, 2011.
  • 89. Kiss F., Szentagothai J., Atlas anatomii człowieka, Państwowy Zakład Wydawnictw Lekarskich, Warszawa, 1979.
  • 90. Klette R., Tee G., Understanding Human Motion: A Historic Review, CITR, The University of Auckland, New Zealand, 2007.
  • 91. Kozłowski P., Zarys ortopedii, traumatologii i rehabilitacji narządów ruchu, Akademia Medyczna, Katedra i Klinika Ortopedii, Łódź, 1995.
  • 92. Kreczko R., Podstawy leczenia urazowych uszkodzeń kończyn dolnych, AWM, Warszawa, 1985.
  • 93. Kuczyński M., Regulacja pozycji pionowej człowieka: od metod oceny do mechanizmów. Człowiek i ruch, 2 (2), 2000.
  • 94. Kumar N., Kunju N., Kumar A., Sohi B.S., Active marker based kinematic and spatio-temporal gait measurement system using LabVIEW vision. Journal of Scientific & Industrial Research, 69(8): 600-605, 2010.
  • 95. Kuo A.D., Donelan J.M., Dynamic Principles of Gait and Their Clinical Implications. Physical Therapy, 90(2): 157-174, 2010.
  • 96. Larsen P.K., Lynnerup N., Henriksen M., Alkjaer T., Simonsen E.B., Gait recognition using joint moments, joint angles. and segment angles. Journal of Forensic Biomechanics 1, 2010.
  • 97. Leardini A., Biagi F., Merlo A., Belvedere C., Benedetti M.G., Multi-segment trunk kinematics during locomotion and elementary exercises. Clinical Biomechanics, 26(6): 562-571, 2011.
  • 98. Lee J.-W., Lee G.-K., Gait angle prediction for lower limb orthotics and prostheses using an EMG signal and neural networks. International Journal of Control, Automation, and Systems 3(2), 152-158, 2005.
  • 99. Lee J., Shin S.Y., Multiresolution Motion Analysis and synthesis. Computer Science Department, Korea Advanced Institute of Science and Technology, 1996.
  • 100. Leurs F., Ivanenko Y.P., Bengoetxea A., Cebolla A.M., Dan B., Lacquaniti F., Cheron, G.A., Optimal walking speed following changes in limb geometry. Journal of Experimental Biology, 214(13): 2276-2282, 2011.
  • 101. Leyko J., Mechanika ogólna, PWN, Warszawa, 2002.
  • 102. Lin Y.C., Kim H.J., Pandy M.G., A computationally efficient method for assessing muscle function during human locomotion. International Journal for Numerical Methods in Biomedical Engineering, 27(3): 436-449, 2011.
  • 103. Lulic T.J., Susic A., Kodvanj J., Biomechanical analysis of walking: Effects of gait velocity and arm swing amplitude. Periodicum Biologorum, 112(1): 13-17, 2010.
  • 104. Manco M., Marchi P., A proposal of clinical report regarding dynamic EMG in gait disorders following upper motoneuron lesion. The Open Rehabilitation Journal 3, 151-157, 2010.
  • 105. Martinez F., Gomez F., Romero E., A kinematic method for computing the motion of the body centre-of-mass (CoM) during walking: a Bayesian approach. Computer Methods in Biomechanics and Biomedical Engineering, 14(6): 561-572, 2011.
  • 106. Maquet P.G.J., Biomechanics of the hip, Springer-Verlag, Berlin, 1985.
  • 107. Maquet P.G.J., Biomechanics of the knee, Springer-Verlag, New York, 1984.
  • 108. Masani K., Kouzaki M., Fukunaga T., Variability of ground reaction forces during treadmill walking. Journal of Applied Physiology 92, 1885-1890, 2002.
  • 109. MATLAB Spline Toobox, ver. 2.0. The Mathworks, Inc., 1997.
  • 110. McAndrew P.M., Wilken J.M., Dingwell J.B., Dynamic stability of human walking in visually and mechanically destabilizing environments. Journal of Biomechanics, 44(4): 644-649, 2011.
  • 111. McGear T., Passive dynamic walking. The International Journal of Robotics Research, 9(2), 62-82, 1990.
  • 112. Meeh C., Volummessungen des menschlichen Körpers und seiner einzelner Teile in der verschiedenen Altersstufen. Ztschr. für Biologie, 13:125-147, 1895.
  • 113. Minetti A.E., Cisotti C., Mian O.S., The mathematical description of the body centre of mass 3D path in human and animal locomotion. Journal of Biomechanics, 44(8): 1471-1477, 2011.
  • 114. Moe-Nilssen R., A method for reliability analysis of speed-related repeated measures gait data. Gait & Posture, 33(2): 297-299, 2011.
  • 115. Mrozek B., Mrozek Z., Matlab 6, PLI, Warszawa, 2001.
  • 116. Mrozowski J., Awrejcewicz J., Podstawy biomechaniki, Wydawnictwo Politechniki Łódzkiej, Łódź, 2004.
  • 117. Mrozowski J., Awrejcewicz J., Badanie stabilności lokomocyjnej człowieka z wykorzystaniem metod stosowanych w robotyce, I Kongres Mechaniki Polskiej, Warszawa, 2007.
  • 118. Mrozowski J., Awrejcewicz J., Bamberski P., Analysis of stability of human gait, Journal of Theoretical and Applied Mechanics 45(1), 91-98, 2007.
  • 119. Mrozowski J., Awrejcewicz J., Changes in the gait characteristics caused by external load, ground slope and velocity variation. Communications in Nonlinear Science and Numerical Simulation, 16(5): 2313-2318, 2011.
  • 120. Nardello F., Ardigo L.P., Minetti A.E., Measured and predicted mechanical internal work in human locomotion. Human Movement Science, 30(1): 90-104, 2011.
  • 121. Nashner L.M., Strategies for organization of human posture, [w:] M. Igarashi, F.O. Black (eds.), Vestibular and visual control on posture and locomotor equilibrium, 7th Int. Soc. Posturography, Houston, 1983.
  • 122. Nasher L.M., Handbook of balance function testing, Mosby Yearbook Inc., St Louis, 1993.
  • 123. Neptune R.R., McGowan C.P., Muscle contributions to whole-body sagittal plane angular momentum during walking. Journal of Biomechanics, 44(1): 6-12, 2011.
  • 124. Nigg B.M., Herzog W. (eds.), Biomechanics of the musculo-skeletal system, John Wiley & Sons, 1994.
  • 125. Nowak E., Atlas antropometryczny populacji polskiej – dane do projektowania, IWP, Warszawa, 2000.
  • 126. O'Donovan K.J., Kamnik R., O'Keeffe D.E., Lyons G.M., An inertial and magnetic sensor based technique for joint angle measurement. Journal of Biomechanics 40(12), 2604-2611, 2007.
  • 127. Ogihara N., Aoi S., Sugimoto Y., Tsuchiya K., Nakatsukasa M., Forward Dynamic Simulation of Bipedal Walking in the Japanese Macaque: Investigation of Causal Relationships Among Limb Kinematics, Speed, and Energetics of Bipedal Locomotion in a Nonhuman Primate. American Journal of Physical Anthropology, 145(4): 568-580, 2011.
  • 128. Oonishi H., Isha H., Hasegawa T., Mechanical analysis of human pelvis and its applications to the articular hip joint – by means of three-dimensional finite element method. Journal of Biomechanics, 16, 427-444, 1983.
  • 129. Orovic I., Stankovic S., Amin M.A., new approach for classification of human gait based on time-frequency feature representations. Signal Processing, 91(6): 1448-1456, 2011.
  • 130. Ortega J.D., Farley C.T., Minimizing center of mass vertical movement increases metabolic cost in walking. Journal of Applied Physiology 99, pp. 2099-2107, 2005.
  • 131. Park J.B., Biomaterials, Plenum, 1979.
  • 132. Park M.J., Choi M.G., Shin S.Y., Human Motion Reconstruction from Inter-Frame Feature Correspondences of a Single Video Stream Using a Motion Library.
  • 133. Park J.H., Rhee Y.K., ZMP Trajectory Generation for Reduced Trunk Motions of Biped Robots, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'98), pp. 90-95, Victoria, Canada, October 1998.
  • 134. Pedersen D.R., Brand R.A., Davy D.T., Pelvic muscle and acetabular contact forces during gait. Journal of Biomechanics, 30 (9), 959-965, 1997.
  • 135. Peng C., Oelmann B., Joint-angle measurement using accelerometers and gyroscopes – a survey. IEEE Transactions on Instrumentation and Measurement 59(2), 404-414, 2010.
  • 136. Peruzzi A., la Croce U., Cereatti A., Estimation of stride length in level walking using an inertial measurement unit attached to the foot: A validation of the zero velocity assumption during stance. Journal of Biomechanics, 44(10): 1991-1994, 2011.
  • 137. Poskriakov S., Humanoid Balance Control: A Comprehensive Review, Diploma Thesis, Directors: Prof. Christian Pellegrini (CUI), Prof. Auke Ijspeert (EPFL/BIRG), Supervisor: Yvan Bourquin (EPFL/BIRG). University of Geneva, Faculty of Science, Computer Science Dept. (CUI) in collaboration with Biologically Inspired Robotics Group (EPFL/BIRG), April 30th, 2006.
  • 138. Putz R., Pabst R., Sobotta – Atlas anatomii człowieka, tom 2. Urban & Partner, Wrocław, 1997.
  • 139. Qiang Huang, Kazuhito Yokoi, Shuij Kajita, Kenji Kaneko, Planning walking patterns for biped robot, Proc. IEEE Transactions on Robotics and Automation, Vol. 17, No. 3, June 2001.
  • 140. Reilly D.T., Burstein A.H., The elastic and ultimate properties of compact bone tissue, Journal of Biomechanics, 393-405,1975.
  • 141. Rubenson J., Lloyd D.G., Heliams D.B., Besier T.F., Fournier P.A., Adaptations for economical bipedal running: the effect of limb structure on three-dimensional joint mechanics. Journal of the Royal Society Interface, 8(58): 740-755, 2011.
  • 142. Safikhani H., Kamalden T., Amri S., Ground reaction force during walking with and without counterbalance load system. Australian Journal of Basic and Applied Sciences 5(12), 2704-2708, 2011.
  • 143. Saito M., Nakajima K., Takano C., Ohta Y., Sugimoto C., Ezoe R., Sasaki K., Hosaka H., Ifukube T., Ino S., Yamashita K., An in-shoe device to measure plantar pressure during daily human activity. Medical Engineering & Physics, 33(5): 638-645, 2011.
  • 144. Saito H., Watanabe T., Arifin A., Ankle and knee joint angle measurements during gait with wearable sensor system for rehabilitation. Dössel O., and Schlegel W.C., IFMBE Proceedings 25/IX, 506-509, 2009.
  • 145. Salvendy G., Handbook of human factors and ergonomics, John Wiley and Sons, 1997.
  • 146. Sardain P., Rostami M., Thomas E., Bessonnet G., Biped robots: Correlations between technological design and dynamic behavior, Control Engineering Practice, 7, 401-411, 1999.
  • 147. Sasaki K., Neptune R.R., Individual muscle contributions to the axial knee joint contact force during normal walking. Journal of Biomechanics, 43(14): 2780-2784, 2010.
  • 148. Saunders J.B.M., Inman V.T., Eberhard H.D., The major determinants in normal and pathological gait, The Journal of Bone & Joint Surgery, 35-A, 543-558, 1953.
  • 149. Scheys L., Desloovere K., Spaepen A., Suetens P., Jonkers I., Calculating gait kinematics using MR-based kinematic models. Gait & Posture, 33(2): 158-164, 2011.
  • 150. Segev-Jacubovski O., Herman T., Yogev-Seligmann G., Mirelman A., Giladi N., Hausdorff J.M., The interplay between gait, falls and cognition: can cognitive therapy reduce fall risk? Expert Review of Neurotherapeutics, 11(7): 1057-1075, 2011.
  • 151. Shroyer J.F., Weimar W.H., Comparative Analysis of Human Gait While Wearing Thong-Style Flip-flops versus Sneakers. Journal of the American Pediatric Medical Association, 100(4): 251-257, 2010.
  • 152. Skalak R., Chien S. (eds.), Handbook of Bioengineering, McGraw-Hill, 1987.
  • 153. Smith T., Ciało człowieka, ZETDEZET, Warszawa, 1995.
  • 154. Soo C.H., Donelan J.M., Mechanics and energetics of step-to-step transitions isolated from human walking. Journal of Experimental Biology, 213(24): 4265-4271, 2010.
  • 155. Srinivasan M., Fifteen observations on the structure of energy-minimizing gaits in many simple biped models. Journal of the Royal Society Interface, 8(54): 74-98, 2011.
  • 156. Sutherland D.H., Olshen R., Cooper B.A., Woo S.L.Y., The development of mature gait. Journal of Joint and Bone Surgery, 62-A(3), 336-353, 1980.
  • 157. Sylwanowicz W., Anatomia człowieka, Państwowy Zakład Wydawnictw Lekarskich, Warszawa, 1977.
  • 158. Sylwanowicz W., Michajlik A., Ramotowski W., Anatomia i fizjologia człowieka, Państwowy Zakład Wydawnictw Lekarskich, Warszawa, 1980.
  • 159. Takanishi A., Ishida M., Yamazaki Y., Kato I., The realization of dynamic walking by the biped robot WL-10RD. Proceedings of the International Conference on Advanced Robotics, Tokyo, 459-466, 1985.
  • 160. Takanishi A., Takeya T., Karaki H. and Kato I., A control method for dynamic biped walking under unknown external force. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Los Alamitos, CA, 795-801. 1990.
  • 161. Takanishi A., Tochizawa M., Karaki H., Kato I., Dynamic biped walking stabilized with optimal trunk and waist motion. Proceedings of the IEEE/RSJ International Workshop on Intelligent Robots and Systems, 187-192, 1989.
  • 162. Tejszerska D., Michnik R., Jurkojć J., Jureczko P., Modelling of human gait. Proceeding of the 13 Conference of European Society of Biomechanics, Wrocław 2002.
  • 163. Tejszerska D., Świtoński E. (red.), Biomechanika inżynierska. Zagadnienia wybrane. Laboratorium. Wydawnictwo Politechniki Śląskiej, 2004.
  • 164. Terrier P., Deriaz O., Kinematic variability, fractal dynamics and local dynamic stability of treadmill walking. Journal of Neuroengineering and Rehabilitation, 8, 2011.
  • 165. Tesio L., Rota V., Perucca L., The 3D trajectory of the body centre of mass during adult human walking: Evidence for a speed-curvature power law. Journal of Biomechanics, 44(4): 732-740, 2011.
  • 166. Thieme Atlas of Anatomy, Thieme, Stuttgart, 2006.
  • 167. Tomaru A., Kobashi S., Tsumori Y., Yoshia S., Kuramoto K., Imawaki S., Hata Y., A 3-DOF knee joint angle measurement system with inertial and magnetic sensors. Proceedings of 2010 IEEE International Conference on Systems Man and Cybernetics (SMC), 1261-1266, 2010.
  • 168. Tözeren A., Human body dynamics, Springer-Verlag, New York, 2000.
  • 169. Tylman D., Dziak A., Traumatologia narządu ruchu. PZWL, Warszawa, 1996.
  • 170. Umberger B.R., Stance and swing phase costs in human walking. Journal of the Royal Society Interface, 7(50): 1329-1340, 2010.
  • 171. Umberger B.R., Rubenson J., Understanding Muscle Energetics in Locomotion: New Modeling and Experimental Approaches. Exercise and Sport Sciences Reviews, 39(2): 59-67, 2011.
  • 172. Urbanik C., Zagadnienia biomechaniki sportu – technika ruchu, AWF Warszawa, 2003.
  • 173. Vukobratovic M., Borovac B., Surdillovic D., Zero Moment Point – Proper interpretation and new applications, Proceedings of IEEE-RAS Int. Conf. Humanoid Robots, pp. 237-244, 2001.
  • 174. Vukobratovic M., Borovac M., Surla B., Biped Locomotion: Dynamics, Stability, Control and Application, Springer, Berlin 1990.
  • 175. Vukobratovic M., Juricic D., Contribution to the synthesis of biped gait, IEEE Trans. Bio-Med. Eng. BME, 16(1), 1-6, 1969.
  • 176. Watson-Jones R., Złamania i urazy kości i stawów, Państwowy Zakład Wydawnictw Lekarskich, Warszawa, 1980.
  • 177. Winiarski S., Rutkowska-Kucharska A., Estimated ground reaction force in normal and pathological gait. Acta of Bioengineering and Biomechanics 11(1), 53-60, 2009.
  • 178. Winter D.A., Biomechanics and motor control of human movement. John Wiley & Sons, 2004.
  • 179. Wollher D., Desing and Control Aspects of Humanoid Walking Robots, Technische Universität, München, 2005.
  • 180. Wren T.A.L., Gorton G.E., Ounpuu S., Tucker C.A., Efficacy of clinical gait analysis: A systematic review. Gait & Posture, 34(2): 149-153, 2011.
  • 181. Wu M., Gordon K., Kahn J.H., Schmit B.D., Prolonged electrical stimulation over hip flexors increases locomotor output in human SCI. Clinical Neurophysiology, 122(7): 1421-1428, 2011.
  • 182. Wu M., Hornby T.G., Landry J.M., Roth H., Schmit B.D., A cable-driven locomotor training system for restoration of gait in human SCI. Gait & Posture, 33(2): 256-260, 2011.
  • 183. Xiang Y.J., Arora J.S., Abdel-Malek K., Physics-based modeling and simulation of human walking: a review of optimization-based and other approaches. Structural and Multidisciplinary Optimization, 42(1): 1-23, 2010.
  • 184. Yam C.Y., Nixon M.S., Carter J.N., Automated person recognition by walking and running via model-based approaches, Department of Electronics and Computer Science, University of Southampton, Southampton, 2003.
  • 185. Yamada H., Strength of Biological Materials (ed. Evans F.G.), Williams and Wilkins, Baltimore, 1970.
  • 186. Yang C.C., Hsu Y.L., Shih K.S., Lu J.M., Real-Time Gait Cycle Parameter Recognition Using a Wearable Accelerometry System. Sensors, 11(8): 7314-7326, 2011.
  • 187. Yiou E., Do M.C., Control of mediolateral stability during rapid step initiation with preferred and non-preferred leg: Is it symmetrical? Gait & Posture, 32(1): 145-147, 2010.
  • 188. Yu H.Y., Alaqtash M., Spier E., Sarkodie-Gyan T., Analysis of muscle activity during gait cycle using fuzzy rule-based reasoning. Measurement, 43(9): 1106-1114, 2010.
  • 189. Zagrobelny Z., Woźniewski M., Biomechanika kliniczna. Część ogólna, Akademia Wychowania Fizycznego we Wrocławiu, Wrocław, 1997.
  • 190. Zatsiorsky V.M., Kinematics of human motion. Human Kinetics, 1998.
  • 191. Zatsiorsky V.M., Kinetics of human motion, Human Kinetics, 2002.
  • 192. Zhao G.R., Ren L., Tian L.M., Qian Z.H., Wang L., Ren L.Q., A customized model for 3D human segmental kinematic coupling analysis by optoelectronic stereophotogrammetry. Science China-Technological Sciences, 53(11): 2947-2953, 2010.
  • 193. Zienkiewicz O.C., Metoda elementów skończonych, McGraw-Hill, London, Arkady Warszawa, 1972.
  • Strony internetowe:
  • I_l. http://www.medizin.fii-berlin.de/biomechanik
  • I_2. http://jwi.charite.de/en/research/musculoskeletal_biomechanics/instrumented_implants
  • I_3. http://www.isbweb.org
  • I_4. http://www.fizjoterapia.pl
  • I_5. http://www.tecno.ior.it/vrlab/researchers/repository
  • I_6. http://cg.kw.ac.kr/motion_reconstruction/paperl45.pdf
  • I_7. http://www.kistler.com
  • I_8. http://www.qualisys.com
  • I_9. http://www.simi.com
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LODD-0001-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.