PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Transient engine models for optimization and implementation of model predictive control

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Kongres Silników Spalinowych (20-23.05.2007; Kraków, Poland)
Języki publikacji
EN
Abstrakty
EN
The paper deals with the investigation of model based predictive control of combustion engines. Three levels of dynamic models have been used. Firstly the reference1-D model with 3-D extensions calibrated by the experimental data to interpolate/extrapolate the data for identification of simplified fast models. Secondly the nearly real-time physical simulation model which allows for very fast simulation of engine transients and control algorithm design. Finaly the neuro-fuzzy predictive models implemented directly in controller. The predictive models are based on LOLIMOT approach. It is a description of generally nonlinear dynamic system by a sequence of linear dynamic systems valid in particular in one subregion of the whole state space. The decomposition of the state space into subregions is provided using the validity of linear dynamic models. The predictive models are used for the prediction of future engine states in dependence on actual measured states and possible control inputs. The future control inputs are optimized on-line based on locally linearized models. The problem of attainable prediction horizons in context of different speed of engine response to different control inputs is discussed.
Czasopismo
Rocznik
Strony
234--241
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
autor
autor
autor
autor
autor
autor
  • Czech Technical University in Prague Faculty of Mechanical Engineering
Bibliografia
  • [1] Pischinger, S. et al.: Investigation of Predictive Models for Application in Engine Cold-Start Behaviour, SAE Paper 2004 01-0994, 2004.
  • [2] Winsel, T. et al.: Hil-Calibration of SI Engine Cold Start and Warm-Up Using Neural Real-Time Model, SAE Paper 2004-01-1362, 2004.
  • [3] Morel, T., et al.: Manual for GT Power version 6.1. Gamma Technologies, 2004.
  • [4] Macek, J., et al.: Transient Engine Model as a Tool for Predictive Control, SAE Paper 2006-01-0659, 2006.
  • [5] Nelles, O.: Nonlinear system identification with local linear fuzzy-neuro models. Automatisierungs technik. Shaker Verlag, Aachen 1999.
  • [6] Štefan, M.: CTU-LOLIMOT, Research Report U2052-02-45, FME CTU in Prague, Prague 2002.
  • [7] Camacho, E.F., Bordons, C.: Model Predictive Control. Springer Verlag, Berlin, 1999.
  • [8] Valášek, M., et al.: Model Based Predictive Control of Combustion Engine with Constraints, Review of Automotive Engineering of Japan SAE 2005, vol. 26, no. 3, pp. 349-356.
  • [9] Štefan, M., Šika, Z., Valášek, M.: MIMO Neuro-fuzzy Model for Dynamic System Prediction, In: Proc. of Interaction and Feedbacks 2005, IT AS CR, Praha 2005, pp. 135-142.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-LOD2-0010-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.