PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stosunki termiczne i wilgotnościowe w Zatoce Treurenberg i na masywie Olimp (NE Spitsbergen) w okresie od 1.VIII.1899 - 15.VIII.1900

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Thermal and humidity relations in Treurenberg Bay and Massif Olimp (NE Spitsbergen) from 1st August 1899 to 15th August 1900)
Języki publikacji
PL
Abstrakty
EN
The paper describes weather conditions (based on air temperature and humidity) in Treurenberg Bay and Massif Olimp (NE Spitsbergen) for the period from 1st August 1899 to 15th August 1900. The hourly data of the meteorological elements under analysis were collected by the Swedish-Russian scientific expedition, which was sent to Spitsbergen in 1899 to measure an arc of the Earth?s meridian. During the expedition two meteorological stations were established (Fig. 1): the main one (21.9 m a.s.l.) located by the sea in Treurenberg Bay (hereafter 'Treurenberg') and a secondary station (408 m a.s.l.) situated on Massif Olimp (hereafter 'Olimp'). The quality of data were checked and assessed as being very good, especially for the Treurenberg station. The air temperature (T) in Treurenberg in the annual march was highest in August (mean monthly T = 2.1°C) and lowest in March (-27.0°C) (Tab. 2, Fig. 2). Mean yearly T was equal to -9.8°C. The values of T in this part of Spitsbergen are significantly lower than in the western coastal part of the island where, for example, the average annual T for the period 1975-2000 was about twice as high (see Przybylak et al. 2004). On the other hand, mean monthly daily T ranges in Treurenberg are greater (Fig. 3). Day-to-day T changes in the annual cycle were greatest in the cold half-year, and lowest in summer (Fig. 4). These changes are lower here than in the western coastal part of Spitsbergen. Mean monthly daily courses of T are clearest from April to September, showing maximum T in the afternoon, and minimum in the early morning hours (Fig. 5). From October to March (but especially during the polar night) the average daily courses were smooth. Air humidity in Treurenberg was characterized using three commonly used variables: water vapor pressure, relative humidity, and saturation deficit. Due to very low T and quite a large thermic continentality of the climate in NE Spitsbergen, water vapor pressure in Treurenberg is lower than in the western coastal part of Spitsbergen. The highest values in Treurenberg occurred in summer (on average about 6 hPa) and the lowest in late winter (below 1 hPa) (Tab. 2, Fig. 6). Generally, similar relations in the annual march are also seen for two other air humidity variables (see Tab. 2, Fig. 6). The annual cycles of day-to-day changes of all humidity variables in Treurenberg are not clear, as they consist of many maximums and minimums (Fig. 7). These changes are lower here than in other parts of Spitsbergen (see Table 15 in Przybylak 1992a). Mean daily courses of relative humidity are smooth for most months. Only in April and in the period from June to September do we see normal daily cycles with lowest values in 'day' hours and highest values in 'night' hours (Fig. 9). The annual course of T in the Olimp station is similar to that occurring in Treurenberg (Figs. 2 and 10). Of course, the upper station was colder, but only by 1oC for mean annual values (Fig. 11). The drop of T in the Treurenberg region - a drop that is lower than is normally observed in the atmosphere (0.6oC/100 m) - was probably caused by measurement errors (the thermograph at the Olimp station was wrapped in thin material in order to stop the snow accumulating around the metallic sensor). Only limited air humidity data were gathered for the Olimp station due to measurement problems of this element in cold half-year. Therefore, most observations were made only in summer, and they show that the relative humidity was in most cases greater here than at the Treurenberg station. The investigation shows that weather conditions in the NE part of Spitsbergen differ significantly from those observed in the western coastal part of the island. Both T and air humidity are significantly lower in the study area, and these differences in the case of T are especially large in winter.
Rocznik
Tom
Strony
133--147
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • Zakład Klimatologii, Instytut Geografii, Uniwersytet Mikołaja Kopernika ul. Danielewskiego 6, 87–100 Toruń
  • Zakład Klimatologii, Instytut Geografii, Uniwersytet Mikołaja Kopernika ul. Danielewskiego 6, 87–100 Toruń
Bibliografia
  • 1. Araźny A. 2003, Przebieg roczny wilgotności względnej w Arktyce Norweskiej w okresie 1971-2000, Problemy Klimatologii Polarnej, 13: 107-115.
  • 2. Catchpole A.J.W., Ball T.F., 1981, Analysis of historical evidence of climate change in western and northern Canada, in: Climatic Change in Canada – 2, National Museum of Natural Sciences, Project on Climate Change in Canada during the past 20,000 years, Ed. by C.R. Harington, Syllogeus, 33: 48-96.
  • 3. Catchpole A.J.W., Faurer M.A., 1983, Summer sea ice severity in Hudson Strait, 1751-1870, Clim. Change, 5: 115- 139.
  • 4. Catchpole A.J.W., Faurer M.A., 1985, Ships’ log-books, sea ice and the cold summer of 1816 in Hudson Bay and its approaches, Arctic, 38: 121-128.
  • 5. Catchpole A.J.W., Hanuta I., 1989, Severe summer ice in Hudson Strait and Hudson Bay following major volcanic eruptions, 1751 to 1889 A.D., Clim. Change, 14: 61-79.
  • 6. Hisdal V., 1981, The weather in Svalbard in 1980, Norsk Polarintitutt Årbok 1980, Oslo.
  • 7. Hopper J.F., 1985, Early meteorological observations at Fort Enterprise, Northwest Territories, Canada, Polar Record, 22: 684-688.
  • 8. Kay P. A., 1995, An early nineteenth century meteorological register from the eastern Canadian Arctic, Polar Record, 31: 335-342.
  • 9. Przybylak R., 1992a, Stosunki termiczno-wilgotnościowe na tle warunków cyrkulacyjnych w Hornsundzie (Spitsbergen) w okresie 1978-1983, Dokumentacja Geogr., nr 2: 1-105.
  • 10. Przybylak R., 1992b, Spatial differentiation of air temperature and relative humidity on western coast of Spitsbergen in 1979-1983, Pol. Polar Res., 13: 113-130.
  • 11. Przybylak R., 2000, Air temperature in the Canadian Arctic in the mid-nineteenth century based on data from expeditions, Prace Geogr., 107: 251-258.
  • 12. Przybylak R. 2003, The Climate of the Arctic, Atmospheric and Oceanographic Sciences Library, 26, Kluwer Academic Publishers, Dordrecht/Boston/London, ss. 288.
  • 13. Przybylak R., Araźny A., Szczeblewska E., 2004, Klimat tundry w północnej części Ziemi Oskara II (NW Spitsbergen) w okresie 1975-2000, w: Pulina M., Zwoliński Z., Kostrzewski A. (red.), Przewodnik Warsztatów Glacjologicznych „Spitsbergen 2004”, wyd. Komitet Badań Polarnych PAN, Klub Polarny PTG i Uniwersytet Śląski, w druku. Przybylak R., Vizi Z., 2004, Sources Of Meteorological Data For The Canadian Arctic And Alaska From 1819 To 1859 And Their Usefulness For Climate Studies, Proceedings of the Four Seminar for Homogenization and Quality Control in Climatological Databases, Budapest, Hungary 6-10 October 2003, w druku.
  • 14. Simpson G.C., 1919, British Antarctic Expedition 1910-1913, Meteorology, 1, Discussion, Calcutta.
  • 15. Westman J., 1904, Physique terrestre. Meteorologie. Histoire naturelle. 8ieme section. Meterologie. A. Observations regulieres a la station d'hivernage. Observations meteorologiques faites en 1899 et en 1900 a la Baie de Treurenberg, Spitzberg, w: Jaderin, Edvard, leader. Missions scientifiques pour la mesure d'un arc de meridien au Spitzberg entreprises en 1899-1901 sous les auspices des gouvernements russe et suedois: Mission suedoise. T.2. Physique terrestre, meteorologie, historie naturelle. Sect.7-8. Stockholm: Aktiebolaget Centraltryckeriet, 2 (8 A): 1-218.
  • 16. Wilson C., 1982, The summer season along the east coast of Hudson Bay during the nineteenth century. Part I. General introduction; climatic controls, calibration of the instrumental temperature data, 1814 to 1821. Canadian Climate Centre Report No. 82-4: 1-223.
  • 17. Wilson C., 1983a, Some aspects of the calibration of early Canadian temperature records in the Hudson’s Bay Company Archives: a case study for the summer season, eastern Hudson/James Bay, 1814 to 1821, in: Climatic Change in Canada 3, Ed. C. R. Harington, Syllogeus, 49: 144-202.
  • 18. Wilson C., 1983b, The summer season along the east coast of Hudson Bay during the nineteenth century. Part II. The Little Ice Age on eastern Hudson Bay; summers at Great Whale, Fort George, Eastmain, 1814-1821. Canadian Climate Centre Report No. 83-9: 1-145.
  • 19. Wilson C., 1985, The Little Ice Age on eastern Hudson/James Bay: the summer weather and climate at Great Whale, Fort George and Eastmain, 1814-1821, as derived from the Hudson’s Bay Company Records, in: Climatic Change in Canada 5, Ed. C. R. Harington, Syllogeus, 55: 147-190.
  • 20. Wilson C., 1988, The summer season along the east coast of Hudson Bay during the nineteenth century. Part III. Summer thermal and wetness indices. B. The indices 1800 to 1900, Canadian Climate Centre Report No. 88-3: 1-42.
  • 21. Wilson C., 1992, Climate in Canada, 1809-20: Three approaches to the Hudson’s Bay Company Archives as an historical database, in: The year without a summer? World climate in 1816, Ed. C.R. Harington, Canadian Museum of Nature, Ottawa, 162-184.
  • 22. Wood K. and Overland J.E., 2003, Accounts from 19th-century Canadian Arctic Explorers’ Logs reflect present climate conditions, EOS, 84, ss. 410 i 412.
  • 23. Wójcik G., Marciniak K., Przybylak R., Kejna M., 1993, Mezo- i topoklimaty regionu Kaffiöyry (NW Spitsbergen), Wyniki badań VIII Toruńskiej Wyprawy Polarnej Spitsbergen '89, UMK Toruń, 83-112.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM3-0021-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.