PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wpływ zmian temperatury wody na Prądzie Norweskim na kształtowanie rocznej temperatury powietrza w atlantyckiej Arktyce i notowane tam ocieplenie w okresie ostatniego 20-lecia

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
The influence of changes in water temperature in the Norwegian Current on annual air temperature in the Atlantic part of the Arctic and its warming noted over the past 20-year period
Języki publikacji
PL
Abstrakty
EN
Kruszewski, Marsz and Zblewski (2003) found out that winter temperature of water in the Norwegian Current indicates quite strong, occurring with a delay, correlations with the air temperature at Spitsbergen, Bjornoya, Hopen and Jan Mayen. Strong and statistically significant correlations between the mean sea surface temperature (SST) in the period January-March in grid 2°x2° [67°N, 10°E] and the monthly temperature of July, August and September with SST are marked the same year (3-5 month delay) and with the air temperature in November and December the following year (18-20 month delay). Waters of the Norwegian Current transport warm, of higher salinity Atlantic waters. Winter SST of the Atlantic Ocean characterizes the heat resources in the deeper layers of waters. SST in grid [67,10] in an indirect way characterizes heat resources carried with the Atlantic waters into the Norwegian Sea and farther to the Arctic together with the West Spitsbergen and Nordcap currents. The aim of this work is to describe the influence caused by changes in heat resources transported to the Arctic with the Norwegian Current on the annual temperature of air in the region of Hopen, Spitsbergen and Jan Mayen. The examined period covers the years of 1982?2002 and is marked by great warming in this area. The analysis of spatial distribution of correlation coefficients justifies Kruszewski and others (2003) hypothesis of mechanism causing the delayed influence of changes in water heat resources on the air temperature in this region The observed positive correlations between winter SST in [67,10] grid and air temperature in July, August and September result in the influence of changing water heat resources on atmospheric circulation noted in these months. Positive correlations in November and December in the following year result from the ?onflow? to the Arctic of warmer and of high salinity Atlantic waters. They have influence on the ice formation on the Greenland and Barents seas thus causing that influence of changing heat resources carried with waters on air temperature is much stronger. The analysis of regression made it possible to establish the correlation between annual air temperature at a given station (Ts) and winter water temperature (Tw) in [67,10] grid. Annual temperature in a year k is a function of two variables: Tw of the same year as the temperature Ts (Tw(k)) and Tw from the preceding year (Tw(k-1)): Ts(k) = A + b . Tw(k) + c . Tw(k-1) Table 3 contains the values of constant term and regression coefficients as well as statistical characteristics of formulas for the analysed stations. Both variables Tw from the year k and the year k-1 explain about 40% of the changeability in mean annual air temperature of the observed 20-year period at the analysed stations. This means that only one element, i.e. heat resource in the waters of the Norwegian Current, defined with the value Tw, determines more than 1/3 of the whole annual changeability in air temperature in the region located from Jan Mayen up to Hopen and from Tromso up to Ny Alesund. The station for which maximum explanation may be applied (47.7%) is Hopen, the station where the positive trend in annual temperature is the highest (+0.090°C/year). The values of regression coefficients b and c prove that the inertial factor connected with advection of the Atlantic waters has greater role in the changeability in mean annual temperature of air. The analysis of formula [2] indicates that great increases and decreases in annual temperature at the discussed stations will be observed in a k year if the values of Tw in two following years are significantly higher or lower than the mean ones. That is why the occurrence of positive trend in value of Tw should be followed by relatively systematic increase in annual air temperature at stations located at the described region. A positive trend in annual air temperature was noted at the analysed stations over the period 1982?2002. At Jan Mayen its value is +0.067 (ą0.028)°C/year (p<0.026). When taking the estimated values of regression coefficients in the multiple regression connecting the annual temperature at Jan Mayen with the value of Tw (Table 1) and the same value of trend T equal to +0.023 then the value of annual trend in air temperature at Jan Mayen influenced by trend Tw equals 0.0598°C/year. The obtained result indicates that the whole or almost whole warming observed at Jan Mayen in the years 1983-2002 may be explained by direct and indirect influence of the increase in the value of Tw over that period.
Rocznik
Tom
Strony
69--78
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
  • Akademia Morska w Gdyni Katedra Meteorologii i Oceanografii Nautycznej, Wydział Nawigacyjny ul. Sędzickiego 19, 81-374 Gdynia, stysa@am.gdynia.pl
Bibliografia
  • 1. Alekseeev G.V., 1987, Naturnye isledovaniya v Norvežskoj energoaktivnoj zone okeana. [w:] Issledovaniya roli energoaktivnykh zon okeana v kratkoperiodnykh kolebaniyakh klimata. Itogi Nauki i Tekhniki, ser. Atmosfera, okean, kosmos - Programma "Razriezy", tom 8: 233-240.
  • 2. Comiso J.C., 2003, Warming trends in the Arctic from clear sky satellite observation. Journal of Climate, 16 (21): 3498-3510.
  • 3. Førland E.J., Hanssen-Bauer I., Nordli P.Ø., 1997, Climate statistics and long term series of temperature and precipitation at Svalbard and Jan Mayen, DNMI – Rapport, 21/97, Norwegian Meteor. Inst., Oslo, 72 pp.
  • 4. Furevik T. 2001, Annual and interannual variability of Atlantic Water temperatures in the Norwegian and Barents Seas: 1980–1996. Deep-Sea Research I, 48: 383-404.
  • 5. Hanssen-Bauer I., Førland E.J., 1998, Long-term trends in precipitation and temperature in the Norwegian Arctic: can they be explained by changes in atmospheric circulation patterns? Climate Research, 10: 143-153.
  • 6. IPCC, 1996: Climate Change 1995: The Science of Climate Change (J. T. Houghton, L. G. Miera Filho, B. A. Callander, N. Harris, A. Kattenberg and K. Maskell, Eds.), Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, U.K., 572 pp.
  • 7. Karcher M. J., Gerdes R., Kauker F., Köberle C. 2003, Arctic warming: Evolution and spreading of the 1990s warm event in the Nordic seas and the Arctic Ocean. J. Geophys. Res., 108(C2), 3034 doi:10.1029/2001JC001265
  • 8. Kożuchowski K., Stolarczuk A., 1996, Bezwładność i okresowość zmian temperatury powietrza na Spitsbergenie. Problemy Klimatologii Polarnej, 6: 17-22.
  • 9. Kruszewski G., Marsz A., Zblewski S., 2003, Wpływ zmian temperatury powierzchni oceanu na Morzu Norweskim na temperaturę powietrza na Svalbardzie i Jan Mayen (1982-2002). Problemy Klimatologii Polarnej, 13: 59-78.
  • 10. Niedźwiedź T., 1997, Wieloletnia zmienność wskaźników cyrkulacji atmosfery nad Spitsbergenem i ich rola w kształtowaniu temperatury powietrza. Problemy Klimatologii Polarnej, 7: 19-40.
  • 11. Niedźwiedź T., 2003, Współczesna zmienność cyrkulacji atmosfery, temperatury powietrza i opadów atmosferycznych na Spitsbergenie. Problemy Klimatologii Polarnej, 13: 79-92.
  • 12. Niedźwiedź T, 2004, Rola cyrkulacji atmosfery w kształtowaniu temperatury powietrza w styczniu na Spitsbergenie. Problemy Klimatologii Polarnej 14: 59-68.
  • 13. Perry A., Walker J.M., 1982, System ocean – atmosfera. Wydawnictwo Morskie, Gdańsk: 267 s.
  • 14. Przybylak R., 1996, Zmienność temperatury powietrza i opadów w Arktyce w okresie oberwacji instrumentalnych. Wydawnictwo UMK, 280 s.
  • 15. Przybylak R., 2000, Temporal and spatial variation of surface air temperature over the period of instrumental observations in the Arctic, International Journal of Climatology, Vol. 20, No 6 (May 2000): 587-614.
  • 16. Reynolds, R. W., Rayner N. A., Smith T. M., Stokes D. C., Wang W., 2002, An improved in situ and satellite SST analysis for climate. Journal of. Climate, 15, 1609-1625.
  • 17. Reynolds R.W., Smith T.M., 1994, Improved global sea surface temperature analyses using optimum interpolation. Journal of Climate 7, 929-948.
  • 18. Savčenko V.G., Nagurnyj A.P., 1987, Vozdejstvie teplovykh potokov iz okeana na kolebaniya klimata vysokikh širot. AANII, Gidrometeoizdat, Leningrad: 199 s.
  • 19. Tuomenvirta H., Alexandersson H., Drebs A., Frich P., Nordli P.Ø., 2000, Trends in Nordic and Arctic temperature extremes and ranges, Journal of Climate, 13, 3: 977-990.
  • 20. Tuomenvirta H., Drebs A., Forland E., Tveito O.E., Alexandersson H., Laursen E.V., Jonsson T., 2001, Nordklim data set 1.0 – description and illustration. DNMI-Report, 08/01 KLIMA; 27 s.
  • 21. Ugryumov A.I., 1982, Teplovoj režim okeana i dolgosročnye prognozy pogody. Gidrometeoizdat, Leningrad: 176 s.
  • 22. Zhang J., Rothrock A. D., Steele M. 1998, Warming of the Arctic Ocean by strenghtened Atlantic inflow: Model results. Geophysical Research Letters, Vol. 25, No. 10: 1745-1748.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM3-0021-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.