Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
The influence of the changes in sea surface temperature of the Norwegian Sea on the air temperature at Svalbard and Jan Mayen (1982-2002)
Języki publikacji
Abstrakty
This work deals with correlations between SST in the Norwegian Sea and air temperature at selected stations located in the Atlantic sector of Arctic (Bjornoya, Hornsund, Svalbard-Lufthavn, Ny Alesund and Jan Mayen). The southern and central parts of the Norwegian Sea show the strongest correlation with the air temperature at the above mentioned stations, whereas the northern parts of this sea show weaker correlation. Apart from synchronic correlations (occurring in the same months) asynchronic correlations have been found. The latter are generally much stronger than the synchronic ones. The predominant influence on the changes in air temperature at the stations have the winter SST (JFMA) in the central part of the Norwegian Sea (grid 2° x 2°, 67°N, 010°E). These winter SST show quite strong correlations with monthly air temperature at Bjornoya, Hornsund, Svalbard-Lufthavn and Jan Mayen in July, August and September. At Ny Alesund station the period with statistically significant correlation between the air temperature and the winter SST is limited to September. The strongest correlation can be observed in August (see Table 4). The observed correlations result from modification in atmospheric circulation, caused by increased heat volume in the Norwegian Sea. Such modification is reflected in the increased frequency of occurrence of meridional atmospheric circulation, which is accompanied by the increase in the frequency of air advection from the S to this sector of Arctica. Some correlations which show more significant time shift have also been observed (see Table 5). Winter SST indicate positive correlations with air temperature observed at Bjornoya and Horn-sund in August and September the following year and at Svalbard-Lufthavn in September. At Ny Alesund station the coefficients of correlation with the air temperature in the following year are increased but they do not reach the statistically significant level. Another period with statistically significant correlations is November and December the following year; significant correlations with winter SST occur at Bjornoya (r = 0.71) and all stations located on Spitsbergen (r = 0.57). The correlations of SST with air temperature observed at Jan Mayen the following year are different, i.e. the presence of strong correlations is limited to summer season - July, August and September (r ~ 0.6). The correlations with winter SST occurring in November and December the following year is connected with warm masses carried to this region together with waters with the West Spitsbergen Current. Correlations between SST and air temperature present in summer and at the end of summer the following year may probably be influenced by the modification of atmospheric circulation. The only significant correlation with summer (July and August) SST indicates the temperature of February the following year at stations located on Spitsbergen and Jan Mayen. These correlations are negative (r ~ -0.55 - -0.50). The reason for occurrence of such correlations is not clear. The changeability of winter SST in the central part of the Norwegian Sea explains from 20% (Hornsund) to 32% (Bjornoya) of changeability in annual air temperature at the above mentioned stations in the same year and from 34% (Jan Mayen) to 41% (Hornsund) of changeability in annual air temperature in the following year. The increased level of explanation of changeability in air temperature the following year influenced by winter SST is connected with the delayed flowing of the Atlantic waters to high latitudes carried with the Norwegian Current and the West Spitsbergen Current.
Czasopismo
Rocznik
Tom
Strony
59--78
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
- Akademia Morska w Gdyni, Katedra Meteorologii i Oceanografii Nautycznej
autor
- Akademia Morska w Gdyni Katedra Meteorologii i Oceanografii Nautycznej
autor
- Akademia Morska w Gdyni Katedra Meteorologii i Oceanografii Nautycznej
Bibliografia
- 1. Furevik T., 2000, On anomalous sea surface temperatures in the Nordic Seas. Journal of Climate, Vol. 13, No 5: 1044-1053.
- 2. Furevik T., 2001, Annual and interannual variability of Atlantic Water temperatures in the Norwegian and Barents Seas: 1980–1996. Deep-Sea Research I, 48: 383-404.
- 3. Lamb H. H., 1972, Climate: Present, Past and Future. Methuen & Co Ltd. London: 613 s.
- 4. Marsz A., 1999, Temperatura powierzchni wody na Północnym Atlantyku a temperatura powietrza na Spitsbergenie i Jan Mayen. Problemy Klimatologii Polarnej, 9: 37-80.
- 5. Marsz A., 2000, Związki między wskaźnikiem Oscylacji Północnego Atlantyku a przenosem wód atlantyckich i ciepła przez Kanał Farero-Szetlandzki. Prace Wydziału Nawigacyjnego WSM w Gdyni, 10: 111-126.
- 6. Midttun L., 1990, Surface temperatures of the Barents Sea. Polar Research, 8: 11-16.
- 7. Mork K. A., Blindheim J., 2000. Variations in the Atlantic inflow to the Nordic Seas, 1955–1996. Deep-Sea Research I, 47: 1035-1057.
- 8. Niedźwiedź T., 1992, Wybrane problemy klimatologii synoptycznej Spitsbergenu. Problemy Klimatologii Polarnej, 2: 78-84.
- 9. Niedźwiedź T., 1997, Wieloletnia zmienność cyrkulacji atmosfery nad Spitsbergenem i jej rola w kształtowaniu temperatury powietrza. Problemy Klimatologii Polarnej, 7: 19-40.
- 10. Niedźwiedź T., 2001, Zmienność cyrkulacji atmosfery nad Spitsbergenem w drugiej połowie XX wieku. Problemy Klimatologii Polarnej, 11: 7-26.
- 11. Niedźwiedź T., 2003, Współczesna zmienność cyrkulacji atmosfery, temperatury powietrza i opadów atmosferycznych na Spitsbergenie. Problemy Klimatologii Polarnej, 13: 79-87.
- 12. Orvik K. A., Skagseth Ø., Mork M., 2001, Atlantic inflow to the Nordic Seas: current structure and volume fluxes from moored current meters, VM-ADCP and SeaSoar-CTD observations, 1995–1999. Deep-Sea Research I, 48: 937-957.
- 13. Ratcliffe R. A. S., Murray R., 1970, New lag associations between North Atlantic sea temperature and European pressure applied to long-range weather forecasting. Quartly J. Royal Met. Soc. No 96: 226-246.
- 14. Reynolds R.W., Smith T.M., 1994, Improved global sea surface temperature analyses. Journal of Climate, 7: 929-948.
- 15. Rigor I. G., Colony R. L., Martin S., 2000, Variations in surface air temperature observations in the Arctic 1979– 1997. Journal of Climate, Vol. 13, No 5: 896-914.
- 16. Zhang J., Rothrock A. D., Steele M., 1998, Warming of the Arctic Ocean by strenghtened Atlantic inflow: Model results. Geophysical Research Letters, Vol. 25, No 10: 1745-1748.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM3-0020-0024