PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of damage and fracture in ceramic matrix composites - an overview

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Modelowanie uszkodzenia i pękania w kompozytach o matrycy ceramicznej - przegląd stanu wiedzy
Języki publikacji
EN
Abstrakty
EN
This is a review paper on the existing approaches to modelling of discrete cracks (fracture) and diffuse microcracking (damage) in ceramic matrix composites under mechanical or thermal loading. The focus is on Ceramic Matrix Composites (CMC) with metal particle inclusions and on interpenetrating metal ceramic networks. The second phase in form of ceramic inclusions is not considered. The models of toughening mechanisms are discussed in considerable detail. Sections 2-5 deal with discrete cracks while Sections 6-9 with diffuse microcracking. The paper is concluded with identification of unresolved problems and topics for future research in the area of fracture and damage of CMC.
PL
Niniejsza praca stanowi przegląd istniejących modeli pękania i uszkodzenia w kompozytach o matrycy ceramicznej (CMC) pod działaniem obciążeń mechanicznych lub termicznych. Nacisk położono na CMC z inkluzjami metalicznymi oraz na CMC typu przenikających się faz metaliczno ceramicznych. Sytuacje, gdy druga faz ma postać inkluzji ceramicznych, nie były analizowane. Rozdziały 2-5 dotyczą problemów pękania (wzrostu makroszczeliny), podczas gdy rozdziały 6-9 - problemów uszkodzenia (wpływu mikroszczeliny na zachowanie się CMC). Na zakończenie pracy zaproponowano listę nierozwiązanych problemów oraz tematów przyszłych badań pożądanych w zakresie pękania i uszkodzenia CMC.
Rocznik
Strony
455--484
Opis fizyczny
Bibliogr. 52 poz., rys.
Twórcy
autor
Bibliografia
  • 1. Aboudi J., 1991, Mechanics of Composite Materials- a Unified Micromechanical Approach, Elsevier, Amsterdam
  • 2. Ashby M.F., Blunt F.J., Bannister M., 1989, Flow characteristic of highly constrained metal wires, Acta Metall., 37, 1847-1857
  • 3. Baney J.M., Zhao Y.H., Weng G.J., 1996, Progressive debonding of aligned oblate inclusions and loss of stifiness in a brittle matrix composites, Eng. Fracture Mech., 53, 897-910
  • 4. Bannister M., Shercliff H., Bao G., Zok F., Ashby M.F., 1992, Toughening in brittle systems by ductile bridging ligaments, Acta Metall. Mater., 40, 1531-1537
  • 5. Bao G., Hui C.-Y., 1990, Effects of interface debonding on the toughness of ductile-particle reinforced ceramics, Int. J. Solids Structures, 26, 631-642
  • 6. Bao G., Zok F., 1993, On the strength of ductile particle reinforced brittle matrix composites, Acta Metall. Mater., 41, 3515-3524
  • 7. Basista M., 2001, Micromechanical and lattice modeling of brittle damage, IFTR Reports, No. 4/2001, Warsaw
  • 8. Budiansky B., Amazigo J.C., Evans A.G., 1988, Small-scale crack bridging and the fracture toughness of particulate-reinforced ceramics, J. Mech. Phys. Solids, 36, 167-187
  • 9. Costanzo F., Boyd J.G., Allen D.H., 1996, Micromechanics and homogenization of inelastic composite materials with growing cracks, J. Mech. Phys. Solids, 44, 333-370
  • 10. Daehn G.S., Starck B., Xu L., Elfishawy K.F., Ringnalda J., Frase H.L., 1996, Elastic and plastic behaviour of a co-continuous alumina/aluminum composite, Acta Mater., 44, 249-261
  • 11. Evans A.G., McMeeking R.M., 1986, On the toughening of ceramic by strong reinforcements, Acta Metall., 12, 2435-2441
  • 12. Feng X.-Q., Mai Y.-W., Qin Q.-H., 2003, A micromechanical model for interpenetrating multiphase composites, Comput. Mater. Sci., 28, 486-493
  • 13. Guo R., Shi H.J., Yao Z.H., 2003, Modeling of interfacial debonding crack in particle reinforced composites using Voronoi cell finite element method, Comput. Mech., 32, 52-59
  • 14. Hoffman M., Skirl S., Pompe W., Roedel J., 1999, Thermal residual strains and stresses in Al2O3/Al composites with interpenetrating networks, Acta Mater., 47, 565-577
  • 15. Horgan C.O., Polignone D.A., 1995, Cavitation in nonlinearly elastic solids: A review, Appl. Mech. Rev., 48, 471-485
  • 16. Hsueh C.H., Becher P.F., 1996, Residual thermal stresses in ceramic composites. Part I: with ellipsoidal inclusions, Mater. Sci. Eng., A212, 22-28
  • 17. Hu K.X., Chandra A., 1993, Interactions among general systems of cracks and anticracks: an integral equation approach, ASME J. Appl. Mech., 60, 920-928
  • 18. Hu K.X., Chandra A., Huang Y., 1993, Fundamental solutions for dilute distributions of inclusions embedded in microcracked solids, Mech. Mater., 16, 281-294
  • 19. Hu K.X., Chandra A., Huang Y., 1994, On interacting bridged crack systems, Int. J. Solids Struct., 31, 599-611
  • 20. Huang Y., Hu K.X., Chandra A., 1993, The effective elastic moduli of microcracked composite materials, Int. J. Solids Struct., 30, 1907-1918
  • 21. Huang Y., Hutchinson J.W., Tvergaard V., 1991, Cavitation instabilities in elastic-plastic solids, J. Mech. Phys. Solids, 39, 223-242
  • 22. Jiang Z.Q, Chandra A., Huang Y., 1996, A hybrid micro-macro BEM with micro-scale inclusion-crack interactions, Int. J. Solids Struct., 33, 2309-2329
  • 23. Jin Z.-H., Batra R.C., 1999, Thermal shock in a metal-particle-reinforced ceramic matrix composite, Eng. Fracture Mech., 62, 339-350
  • 24. Kachanov M., 1993, Elastic solids with many cracks and related problems, Adv. Appl. Mech., 30, 259-445, Academic Press, New York
  • 25. Karihaloo B.L., Wang M., Grzybowski M., 1996, Doubly periodic arrays of bridged cracks and short fibre-reinforced cementitious composites, J. Mech. Phys. Solids, 44, 1565-1586
  • 26. Kolhe R., Hui C.-Y., Ustundag R., Sass S.L., 1996, Residual thermal stresses and calculation of the critical metal particle size for interfacial crack extension in metal-ceramic matrix composites, Acta Mater., 44, 279-287
  • 27. Kotoul M., 2001, Constitutive modeling of ratcheting of metal particulatereinforced ceramic matrix composites, Mater. Sci. Eng., A319/321, 657-661
  • 28. Kotoul M., Profant T., 2000, Effective toughness for bridged crack interacting with an arbitrary oriented and located microcrack, Mech. Mater., 32, 203-234
  • 29. Krajcinovic D., 1996, Damage Mechanics, Elsevier, Amsterdam
  • 30. Krstic V.D., 1983, On the fracture of brittle-matrix/ductile-particle composites, Philosophical Magazine, A48, 695-708
  • 31. Lemaitre J., Chaboche J.-L., 1985, Mecanique des Materiaux Solides, Dunod, Paris
  • 32. Levy A.J., 1995, Nonsymmetric cavity formation at circular inclusion under remote equibiaxial load, J. Mech. Phys. Solids, 43, 1003-1024
  • 33. Mataga P.A., 1989, Deformation of crack-bridging ductile reinforcements in toughened brittle materials, Acta Metall., 37, 3349-3359
  • 34. Moukarzel C., Duxbury P.M., 1994, Failure of three-dimensional random composites, J. Appl. Physics, 76, 4086-4094
  • 35. Mura T., 1987, Micromechanics of Defects in Solids, Martinus Nijhoff Publ, The Hague
  • 36. Needleman A., 1987, A continuum model for void nucleation by inclusion debonding, J. Appl. Mech., 54, 525-531
  • 37. Nemat-Nasser S., Hori M., 1999, Micromechanics: Overall Properties of Heterogeneous Materials, Elsevier, Amsterdam
  • 38. Prielipp H., Knechtel M., Claussen N., Streiffer S.K., Muellejans H., Ruehle M., Roedel J., 1995, Strength and fracture toughness of aluminum/alumina composites with interpenetrating networks, Mater. Sci. Eng., A197, 19-30
  • 39. Raddatz O., Schneider A., Claussen N., 1998, Modelling of R-curve behaviour in ceramic/metal composites, Acta Mater., 46, 6381-6395
  • 40. Rice J.R., 1971, Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity, J. Mech. Phys. Solids, 19, 433-455
  • 41. Rubinstein A.A., Wang P., 1998, The fracture toughness of a particulatereinforced brittle matrix, J. Mech. Phys. Solids, 46, 1139-1154
  • 42. Sigl L.S., Mataga P.A., Dalgleish B.J., McMeeking R.M., Evans A.G., 1988, On the toughness of brittle materials reinforced with a ductile phase, Acta Metall., 36, 945-953
  • 43. Skirl S., Krause R., Wiederhorn S.M., Roedel J., 2001, Processing and mechanical properties of Al2O3/Ni3Al composites with interpenetrating network microstructure, J. Am. Ceram. Soc., 84, 2034-2040
  • 44. Talreja R., edit., 1994, Damage Mechanics of Composite Materials, Elsevier, Amsterdam
  • 45. Tohgo K., Weng G.J., 1994, A progressive damage mechanics in particlereinforced metal- matrix composites under high triaxial tension, ASME J. Eng. Mater. Tech., 116, 414-420
  • 46. Tvergaard V., 1992, Effect of ductile particle debonding during crack bridging in ceramics, Int. J. Mech. Sci., 34, 635-649
  • 47. Tvergaard V., Huang Y., Hutchinson J.W., 1992, Cavitation instabilities in a power hardening elastic-plastic solid, Eur. J. Mech. A/Solids, 11, 215-231
  • 48. Wang J., 2002, Overall moduli and constitutive relations of bodies containing multiple bridged microcracks, Int. J. Solids Struct., 39, 2203-2214
  • 49. Wegner L.D., Gibson L.J., 2000, The mechanical behaviour of interpenetrating phase composites - I: modelling, Int. J. Mech. Sci., 42, 925-942
  • 50. Wegner L.D., Gibson L.J., 2000, The mechanical behaviour of interpenetrating phase composites - II: a case study of a three-dimensionally printed material, Int. J. Mech. Sci., 42, 943-964
  • 51. Yuan F.G., Pagano N.J., Cai X., 1997, Elastic moduli of brittle matrix composites with interfacial debonding, Int. J. Solids Struct., 34, 177-201
  • 52. Zimmermann A., Hoffman M., Emmel T., Gross D., Roedel J., 2001, Failure of metal- ceramic composites with spherical inclusions, Acta Mater., 49, 3177-3187
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWM2-0055-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.