Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: of this paper is to study the damping behaviour of ZC63 magnesium alloy and the same alloy reinforced with short Saffil fibres. Design/methodology/approach: Samples were thermally cycled between room temperature and increasing upper temperature of the thermal cycle and the logarithmic decrement were measured at room temperature. Findings: The strain amplitude dependence of the logarithmic decrement can be divided to two components: the amplitude independent and the amplitude dependent. While the thermal treatment does not change the amplitude independent component, the amplitude dependent part increases with increasing upper temperature of the thermal cycle. Research limitations/implications: Redistribution of solute atoms during thermal cycles is the reason for the observed changes in the amplitude dependence of decrement. Thermal stresses arise in the composite at the interfaces between the matrix and the reinforcement owing to a considerable mismatch of the thermal expansion coefficients of the matrix and that of the reinforcement. Practical implications: The ZC63/Saffil composites may be used as damping materials. Originality/value: New results on the damping behaviour of ZC63 alloy and its composite including internal friction were obtained.
Wydawca
Rocznik
Tom
Strony
541--548
Opis fizyczny
Bibliogr. 22 poz., il., wykr.
Twórcy
autor
autor
- Department of Physics of Materials, Faculty Mathematics and Physics, Charles University Prague, Ke Karlovu 5, CZ-121 16 Praha 2, Czech Republic, lukac@met.mff.cuni.cz
Bibliografia
- [1] M. O. Pekguleryuz, Creep resistant magnesium alloys for powertrain applications, Magnesium Alloys and their Applications, Wiley-VCH, 2003.
- [2] M. Greger, R. Kocich, L. Čížek, Forging and rolling of magnesium alloy AZ61, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 447-450.
- [3] L. A. Dobrzański, T. Tański, L. Čížek, Heat treatment impact on the structure of die-cast magnesium alloys, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 431-434.
- [4] L. A. Dobrzański, T. Tański, L. Čížek, Influence of Al addition on structure of magnesium casting alloys, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 221-224.
- [5] A. Kiełbus, T. Rzychoń, R. Cibis, Microstructure of AM50 die casting magnesium alloy, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 135-138.
- [6] K. Ishikawa, H. Watanabe, T. Mukai, High strain rate deformation behaviour of an AZ91 magnesium alloy at elevated temperatures, Materials Letters 59 (2005) 1511-1515.
- [7] Z. Trojanová, P. Lukáč, Compressive deformation behaviour of magnesium alloys, Journal of Materials Processing Technology 162-153 (2005) 416-421.
- [8] A. Kiełbus, Structure and mechanical properties of casting MRS-B magnesium alloy, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 131-134.
- [9] A. Kiełbus, Microstructure of AE44 magnesium alloy before and after hot chamber die casting, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 459-462.
- [10] B. L. Mordike, P. Lukáč, Interfaces in Mg-based composites, Surface and Interface Analysis 31 (2001) 682-685.
- [11] P. Lukáč, Z. Trojanová, Magnesium-based nanocomposites, International Journal of Materials & Product Technology 23 (2005) 121-137.
- [12] A. V. Granato, K. Lücke, Theory of mechanical damping due to dislocations, Journal of Applied Physics 27 (1956) 583-593.
- [13] A. V. Granato, K. Lücke, Temperature dependence of amplitude-dependent dislocation damping, Journal of Applied Physics 52 (1981) 7136-7142.
- [14] G. D'Anna, W. Benoit, V. M. Vinokur, Internal friction and dislocation collective pinning in disordered quenched solid solution, Journal of Applied Physics 82 (1997) 5983-5990.
- [15] Z. Trojanová, J. Kiehn, P. Lukáč, K. U. Kainer, M. Kulbrok, B. L. Mordike, J. Vicens, Damping behaviour of magnesium alloys and composites, Magnesium Alloys and their Applications, Werkstoff-Informationsgesellschaft, 1998.
- [16] R. J. Arsenault, N. Shi, Dislocations generation due to differences between the coefficients of thermal expansion, Materials Science and Engineering 81 (1986) 175-187.
- [17] E. Correno-Morelli, S. E. Urreta, R. Schaller, Micromechanisms of thermal stress relaxation in MMCs studied by mechanical spectroscopy, Proceedings of International Conference on Fatigue of Composites, SF2M, Paris, 1997, 112-119.
- [18] J. M. San Juan, Transitory effects, Materials Science Forum 360-368 (2001) 416-436.
- [19] C. Mayencourt, R. Schaller, A theoretical approach to the thermal transient mechanical loss in Mg matrix compocites, Acta Materialia 46 (1998) 6103-6114.
- [20] A. S. Nowick, B. S. Berry: Anelastic Relaxations in Crystalline Solids, Academic Press, New York/London, 1972.
- [21] T. S. Ke, Experimental evidence of the viscous behavior of grain boundaries, Physics Review 71 (1947) 533-546.
- [22] Z. Trojanová, P. Lukáč, Deformation behaviour of ZC63 magnesium matrix composite, Archives of Materials Science and Engineering 28/6 (2007) 361-364.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAN-0001-0085