PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Plasmonic abilities of gold and silver spherical nanoantennas in terms of size dependent multipolar resonance frequencies and plasmon damping rates

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Absorbing and emitting optical properties of a spherical plasmonic nanoantenna are described in terms of the size dependent resonance frequencies and damping rates of the multipolar surface plasmons (SP). We provide the plasmon size characteristics for gold and silver spherical particles up to the large size retardation regime where the plasmon radiative damping is significant. We underline the role of the radiation damping in comparison with the energy dissipation damping in formation of receiving and transmitting properties of a plasmonic particle. The size dependence of both: the multipolar SP resonance frequencies and corresponding damping rates can be a convenient tool in tailoring the characteristics of plasmonic nanoantennas for given application. Such characteristics enable to control an operation frequency of a plasmonic nanoantenna and to change the operation range from the spectrally broad to spectrally narrow and vice versa. It is also possible to switch between particle receiving (enhanced absorption) and emitting (enhanced scattering) abilities. Changing the polarization geometry of observation it is possible to effectively separate the dipole and the quadrupole plasmon radiation from all the non-plasmonic contributions to the scattered light.
Twórcy
autor
Bibliografia
  • [1] C. Sönnichen, T. Franzl, T. Wilk, G. von Plessen and J. Fe: Plasmon resonances in large noble-metal clusters. New J. Phys. 4, 93.1-93.8, 2002.
  • [2] J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz and S. Schultz: Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 116, 6755-6759, 2002.
  • [3] G. Laurent, N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner and F. R. Aussenegg: Surface enhanced Raman scattering arising from multipolar plasmon excitation. J. Chem. Phys. 122, 011102, 2005.
  • [4] T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl and J. Feldmann: Surface-plasmon resonances in single metallic nanoparticles. Phys. Rev. Lett. 80, 4249, 1998.
  • [5] K. Lindfors, T. Kalkbrenner, P. Stoller and V. Sandoghdar: Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. Phys. Rev. Lett. 93, 037401, 2004.
  • [6] A. Arbouet, D. Christofilos, N. D. Fatti, F. Vallee, J. R. Huntzinger, L. Arnaud, P. Billaud and M. Broyer: Direct measurement of the single-metal-cluster optical absorption. Phys. Rev. Lett. 93, 127401, 2004.
  • [7] S. A. Maiera and H. A. Atwater: Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98, 011101, 2005.
  • [8] J. R. Lakowicz: Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics 1, 5-33, 2006.
  • [9] M. Quinten, A. Leitner, J. R. Krenn and F. R. Aussenegg: Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23, 1331-1333, 1998.
  • [10] S. A. Maier, M. L. Brongersma, P. G. Kik and H. A. Atwater: Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy. Phys. Rev. B65, 193408.1-193408.4, 2002.
  • [11] R. M. Dickson and L. A. Lyon: Unidirectional plasmon propagation in metallic nanowires. J. Phys. Chem. B104, 6095-6098, 2000.
  • [12] M. L. Brongersma, J. W. Hartman and H. A. Atwater: Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys. Rev. B62, R16356-R16359, 2000.
  • [13] J. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg and C. Girard: Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles. Phys. Rev. Lett. 82, 2590, 1999.
  • [14] J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner and F. R. Aussenegg: Non-diffraction-limited light transport by gold nanowires. Europhys. Lett. 60, 663-669, 2002.
  • [15] S. Efrima and B. V. Bronk: Silver colloids impregnating or coating bacteria. J. Phys. Chem. B102, 5947-5950, 1998.
  • [16] K. Aslan, J. R. Lakowicz and C. Geddes: Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. Curr. Opin. Chem. Biol. 9, 538, 2005.
  • [17] Y. Iwasaki, T. Tobita, K. Kurihara, T. Horiuchi, K. Suzuki and O. Niwa: Imaging of flow pattern in micro flow channel using surface plasmon resonance. Meas. Sci. Technol. 17, 3184, 2006.
  • [18] J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski and C. D. Geddes: Radiative decay engineering: the role of photonic mode density in biotechnology. J. Phys. D Appl. Phys. 36, R240, 2003.
  • [19] I. Gryczynski, J. Malicka, Z. Gryczynski and J. R. Lakowicz: Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission. Anal. Biochem. 324, 170, 2004.
  • [20] E. Matveeva, J. Malicka, I. Gryczynski, Z. Gryczynski and J. R. Lakowicz: Multi-wavelength immunoassays using surface plasmon-coupled emission. Biochem. Bioph. Res. Co. 313, 721, 2004.
  • [21] K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz: The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B107, 668, 2003.
  • [22] J. Jiang, K. Bosnick, M. Maillard and L. Brus: Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. J. Phys. Chem. B107, 9964, 2003.
  • [23] N. Nedyalkov, T. Sakai, T. Miyanishi and M. Obara: Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring. J. Phys. D Appl. Phys. 39, 5037, 2006.
  • [24] S. Nie and S. R. Emory: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102, 1997.
  • [25] W. Haiss, N. T. K. Thanh, J. Aveyard and D. G. Fernig: Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal. Chem. 79, 4215-4221, 2007.
  • [26] P. N. Njoki, I. I. S. Lim, D. Mott, H. Y. Park, B. Khan, S. Mishra, R. Sujakumar, J. Luo and C. J. Zhong: Size correlation of optical and spectroscopic properties for gold nanoparticles. J. Phys. Chem. C111, 14664-14669, 2007.
  • [27] A. S. Kumbhar, M. K. Kinnan and G. Chumanov: Multipole plasmon resonances of submicron silver particles. J. Am. Chem. Soc. 127, 12444-12445, 2005.
  • [28] A. Derkachova and K. Kolwas: Size dependence of multipolar plasmon resonance frequencies and damping rates in simple metal spherical nanoparticles. Eur. Phys. J-Spec. Top. 144, 93-99, 2007.
  • [29] K. Kolwas, A. Derkachova and M. Shopa: Size characteristics of surface plasmons and their manifestation in scattering properties of metal particles. J. Quant. Spectrosc. Ra. 110, 1490-1501, 2009.
  • [30] G. Mie: Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen. Ann. Phys. 25, 376-445, 1908.
  • [31] M. Born and E. Wolf: Principles of Optics. Pergamon, Oxford, 1975.
  • [32] C. F. Bohren and D. R. Huffmann, Absorption and Scattering of Light by Small Particles, Wiley-Interscience, New York, 1983.
  • [33] J. A. Stratton: Electromagnetic Theory. McGRAW-HILL Book Company, Inc., 1941.
  • [34] K. Kolwas, A. Derkachova and S. Demianiuk: The smallest free-electron sphere sustaining multipolar surface plasmon oscillation. Comp. Mat. Sci. 35, 337-341, 2006.
  • [35] C. Noguez: Surface plasmons on metal nanoparticles: The influence of shape and physical environment. J. Phys. Chem. C111, 3806-3819, 2007.
  • [36] R. Rupin: Electromagnetic Surface Modes. edited by A.D. Boardman, Wiley, Chichester, 1982.
  • [37] R. Fuchs and P. Halevi: Basic concepts and formalism of spatial dispertion. Spatial Dispertion in Solids and Plasmas, edited by P. Halevi, North-Holland, 1992.
  • [38] P. B. Johnson and R. W. Christy: Optical constants of the noble metals. Phys. Rev. B6, 4370-4379, 1972.
  • [39] S. Link and M. A. El-Sayed: Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J. Phys. Chem. B103, 4212-4217, 1999.
  • [40] G. P. Wiederrecht: Near-field optical imaging of noble metal nanoparticles. Eur. Phys. J. Appl. Phys. 28, 3-18, 2004.
  • [41] F. Bassani and G. Pastori-Parravicini, Electronic States and Optical Transitions in Solids, Pergamon Press, Oxford, 1975.
  • [42] U. Kreibig and M. Vollmer: Optical properties of metal clusters. Springer Series in Material Science, Vol. 25, p. 532, Springer, Berlin, 1995.
  • [43] A. D. Boardman and B. V. Paranjape: The optical surface modes of metal spheres. J. Phys. F: Met. Phys. 7, 1935, 1977.
  • [44] M. I. Mishchenko, L. D. Travis and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles, Cambridge University Press, Cambridge, 2002.
  • [45] K. Kolwas, S. Demianiuk and M. Kolwas: Dipole and quadrupole plasmon resonances in large sodium clusters observed in scattered light. J. Chem. Phys. 106, 8436-8441, 1997.
  • [46] S. Demianiuk and K. Kolwas: Dynamics of spontaneous growth of light-induced sodium droplets from the vapour phase. J. Phys. B34, 1651-1671, 2001.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0018-0058
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.