Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Multipolar plasmon optical excitations at spherical gold nanoparticles and their manifestations in the particle images formatted in the particle surface proximity are studied. The multipolar plasmon size characteristic: plasmon resonance frequencies and plasmon damping rates were obtained within rigorous size dependent modelling. The realistic, frequency dependent dielectric function of a metal was used. The distribution of light intensity and of electric field radial component at the flat square scanning plane scattered by a gold sphere of radius 95 nm was acquired. The images resulted from the spatial distribution of the full mean Poynting vector including near-field radial components of the scattered electromagnetic field. Monochromatic images at frequencies close to and equal to the plasmon dipole and quadrupole resonance frequencies are discussed. The changes in images and radial components of the scattered electromagnetic field distribution at the scanning plane moved away from the particle surface from near-field to far-field region are discussed.
Wydawca
Czasopismo
Rocznik
Tom
Strony
421--428
Opis fizyczny
Bibliogr. 41 poz., il., wykr.
Twórcy
autor
autor
autor
autor
- Institute of Physics, Polish Academy of Sciences, 32/46 Lotników Ave., 02-668 Warsaw, Poland, Mykola.Shopa@ifpan.edu.pl
Bibliografia
- [1] W. L. Barnes, A. Dereux, and T. W. Ebbesen: Surface plasmon subwavelength optics. Nature 424, 824, 2003.
- [2] M. Quinten, A. Leitner, J. R. Krenn and F. R. Aussenegg: Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23, 1331, 1998.
- [3] M. L. Brongersma, J. W. Hartman and H. A. Atwate: Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. Phys. Rev. B62, 16356, 2000.
- [4] S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel and A. A. G. Requicha: Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2, 229-232, 2003.
- [5] J. V. Hernandez, L. D. Noordam and F. J. Robicheaux: Asymmetric response in a line of optically driven metallic nanospheres. Phys. Chem. B109, 15808, 2005.
- [6] A. F. Koenderink and A. Polman: Complex response and polariton-like dispersion splitting in periodic metal nano-particle chains. Phys. Rev. B74, 033402, 2006.
- [7] C. Sönnichen, T. Franzl, T. Wilk, G. von Plessen and J. Fe: Plasmon resonances in large noble-metal clusters. New J. Phys. 4, 93.1-93.8, 2002.
- [8] J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz and S. Schultz: Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 116, 6755-6759, 2002.
- [9] A. Arbouet, D. Christofilos, N. Del Fatti and F. Vallée: Direct measurement of the single-metal-cluster optical absorption. Phys. Rev. Lett. 93, 127401, 2004.
- [10] D. S. Wang and M. Kerker: Ehanced Raman scattering by molecules adsorbed at the surface of colloidal spheroids. Phys. Rev. B24, 1778-1790, 1981.
- [11] S. Joon Lee, Z. Guan, H. Xu and M. Moskovits: Surface-enhanced Raman spectroscopy and nanogeometry: The plasmonic origin of SERS. J. Phys. Chem. C111, 17985-17988, 2007.
- [12] S. Nie and S. R. Emory: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102-1106, 1997.
- [13] K. L. Kelly, E. Coronado, L. L. Zhao and G. C. Schatz: The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B107, 668-677, 2003.
- [14] Y. Oshikane, T. Kataoka, M. Okuda, S. Hara, H. Inoue and M. Nakano: Observation of nanostructure by scanning near-field optical microscope with small sphere probe. Sci. Technol. Adv. Mat. 8, 181-185, 2007.
- [15] C. Bai: Scanning Tunnelling Microscopy and its Applications. Springer, New York, 2000.
- [16] S. Efrima and B. V. Bronk: Silver colloids impregnating or coating bacteria. J. Phys. Chem. B102, 5947-5950, 1998.
- [17] Y. Fu, J. Zhang and J. R. Lakowicz: Plasmon-enhanced fluorescence from single fluorophores end-linked to gold nanorods. J. Am. Chem. Soc. 132, 5540-5541, 2010.
- [18] J. R. Lakowicz and Y. Fu: Modification of single molecule fluorescence near metallic nanostructures. Laser Photonics Rev. 3, 221-232, 2009.
- [19] J. L. West and N. J. Halas: Engineered nanomaterials for biophotonics applications: Improving, sensing, imaging, and therapeutics. Annu. Rev. Biomed. Eng. 5, 285, 2003.
- [20] K. Lindfors, T. Kalkbrenner, P. Stoller and V. Sandoghdar: Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. Phys. Rev. Lett. 93, 037401, 2004.
- [21] K. Aslan, J. R. Lakowicz and C. Geddes: Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. Curr. Opin. Chem. Biol. 9, 538, 2005.
- [22] E. Matveeva, J. Malicka, I. Gryczynski, Z. Gryczynski and J. R. Lakowicz: Multi-wavelength immunoassays using surface plasmon-coupled emission. Biochem. Bioph. Res. Co. 313, 721, 2004.
- [23] S. Nie and S. R. Emory: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275 1102, 1997.
- [24] J Jiang, K. Bosnick, M. Maillard and L. Brus: Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. J. Phys. Chem. B107, 9964, 2003.
- [25] G. Laurent, N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner and F. R. Aussenegg: Surface enhanced Raman scattering arising from multipolar plasmon excitation. J. Chem. Phys. 122, 011102, 2005.
- [26] S. Eustis and M. A. El-Sayed: Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35, 209-217, 2006.
- [27] Y. Inouye and S. Kawata: Near-field scanning optical microscope with a metallic probe tip. Opt. Lett. 19, 159-161, 1994.
- [28] G. Kaupp: Atomic Force Microscopy, Scanning Nearfield Optical Microscopy and Nanoscratching: Application to Rough and Natural Surfaces. Springer, Heidelberg, 2006.
- [29] A. Derkachova and K. Kolwas: Size dependence of multipolar plasmon resonance frequencies and damping rates in simple metal spherical nanoparticles. Eur. J. Phys. 144, 93-99, 2007.
- [30] K. Kolwas, A. Derkachova and M. Shopa: Size characteristics of surface plasmons and their manifestation in scattering properties of metal particles. J.Quantum. Spectrosc. Ra. 110, 1490-1501, 2009.
- [31] K. Kolwas and A. Derkachova: Plasmonic abilities of gold and silver spherical nanoantennas in terms of size dependent multipolar resonance frequencies and plasmon damping rates. accepted for publication in Opto-Electr. Rev. (2010).
- [32] G. Mie: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 25, 376-445, 1908. (in German)
- [33] M. Born and E. Wolf: Principles of Optics, Pergamon Press. Oxford, 1975.
- [34] C. F. Bohren and D. R. Huffmann: Absorption and Scattering of Light by small Particles. Wiley-Interscience, New York, 1983.
- [35] F. Bassani and G. Pastori-Parravicini: Electronic States and Optical Transitions in Solids. Pergamon Press, Oxford, 1975.
- [36] U. Kreibig and M. Vollmer: Optical Properties of Metal Clusters. Springer, Berlin, 1995.
- [37] P. B. Johnson and R. W. Christy: Optical constants of the noble metals. Phys. Rev. B6, 4370-4379, 1972.
- [38] W. Bazhan and K. Kolwas: Near-field flat-plane images of spherical nanoparticles. Comput. Phys. Comm. 165, 191-198, 2005.
- [39] T. A. El-Brolossy, T. Abdallah, M. B. Mohamed, S. Abdallah, K. Easawi, S. Negm and H. Talaat: Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by photoacoustic technique. Eur. Phys. J. 153, 361-364, 2008.
- [40] F. Chen and R. L. Johnston: Plasmonic properties of silver nanoparticles on two substrates. Plasmonics 4, 147-152, 2009.
- [41] F. Zhou, Z. Y. Li and Y. Liu: Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles. J. Phys. Chem. C112, 20233-20240, 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BWAD-0018-0057