PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The sorption and removal of heavy metals by algal biomasses

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Metal sorption capacity of Chlorella kessleri and two strains of cyanobacteria (Aphanocapsa sp., Anabaena flos-aquae) was studied. It was found that among studied organisms, dead cells of C. kessleri were the most effective sorbents of Pb, Cu, Cd and Zn. They displayed the highest cation-exchange (Cd2+/H+) capacity and bound much more Cd and Zn at pH 7 than at pH 4. The optimum pH for sorption of Pb and Cu was 6. At pH 6, dead cells of C.kessleri could bind maximally about 37 mg Cd, 38 mg Zn, 21 mg Cu and 70 mg Pb per g of dry weight. Generally, algal dead cells (0.3 g dry wt dm^3) removed 50-70% of the metal ions from 0.01 mM solutions. A surplus of calcium and magnesium caused a slight decrease of Pb, Cu, Cd and Zn sorption.
Rocznik
Strony
91--103
Opis fizyczny
Bibliogr. 26 poz., tab., wykr.
Twórcy
  • Institute of Ecology, Polish Academy of Sciences, Experimental Station, Niecała 18/3, 20-080 Lublin, Poland
autor
  • Institute of Ecology, Polish Academy of Sciences, Experimental Station, Niecała 18/3, 20-080 Lublin, Poland
  • Institute of Ecology, Polish Academy of Sciences, Experimental Station, Niecała 18/3, 20-080 Lublin, Poland
Bibliografia
  • [1.] Baccini P., Ruchti J., Wanner O., Grieder E., 1979, MELIMEX, an experimental heavy metal pollution study: regulation of trace metal concentrations in limno-corrals, Schweiz Z. Hydrol., 41, 202-227.
  • [2.] Broda E., 1973, Wie treten nützliche and schädliche Spurenelemente in die Nahrungskette ein?, Naturw. Rdsch., 26, 381-389 (in German).
  • [3.] Crist R. H., Oberholser K., Shank N., Nguyen M., 1981, Nature of bonding between metallic ions and algal cell walls, Environ. Sci. Technol., 15, 1212-1217.
  • [4.] Crist R. H., Oberholser K., Schwartz D., Marzoff D., Ryder D., Crist D. R., 1988, Interactions of metals and protons with algae, Environ. Sci. Technol., 22, 755-760.
  • [5.] Drake L. R., Rayson G. D., 1996, Plant-derived materials for metal ion-selective binding and preconcentration, Anal. Chem., 68, 22A-27A.
  • [6.] Fehrmann C., Pohl P., 1993, Cadmium adsorbtion by the non-living biomass of micro-algae grown in axenic mass culture, J. Appl. Phycol., 5, 555-562.
  • [7.] Gadd G. M., 1990, Biosorption, Chemistry and Industry, 13, 421-426.
  • [8.] Gale N. L., 1986, The role of algae and other microorganisms in metal detoxification and environmental clean- up. [in:] Biotechnology for the mining, metal refining and fossil fuel processing industries, Ehrlich H. L., Holmes D. S., (eds), John Wiley and Sons, New York, 171-180.
  • [9.] Geisweid H. J., Urbach W., 1983, Sorption of cadmium by the green microalgae Chlorella vulgaris, Ankistrodesmus braunii and Eremosphaera viridis, Z.Pflanzenphysiol., 109, 127-141.
  • [10.] Gonzalez-Davila M., 1995, The role of phytoplankton cells on the control of heavy metal concentration in seawater, Mar. Chem., 48, 215-236.
  • [11.] Han-Bin Xue, Stumm W., Sigg L., 1988, The binding of heavy metals to algal surfaces, Wat. Res., 22, 917-926.
  • [12.] Harris P. O., Ramelow G. J., 1990, Binding of metal ions by particulate biomass derived from Chlorella vulgaris and Scenedesmus quadricauda, Environ. Sci. Technol., 24, 220-228.
  • [13.] Hassett J. M., Jennett J. C., Smith J. E., 1980, Heavy metal accumulation by algae, [in:] Contaminant and Sediments, vol 2, R. A. Baker (ed), Ann Arbor Science Publishers, Inc., Ann Arbor MI, USA, 409-423.
  • [14.] Holan Z. R., Volesky B., Prasetyo I., 1993, Biosorption of cadmium biomass of marine algae, Biotech. Bioeng., 41, 819-825.
  • [15.] Ke H.-Y. D., Rayson G. D., 1992, Characterization of Cd binding sites on Datura innoxia using 113 Cd NMR spectrometry, Environ. Sci. Technol., 26, 1202-1205.
  • [16.] Majidi V., Laude Jr D. A., Holcombe J. A., 1990, Investigation of the metal-algae binding site with 113 Cd nuclear magnetic resonance, Environ. Sci. Technol., 24, 1309-1312.
  • [17.] Maquieira A., Elmahadi H. A. M., Puchades R., 1994, Immobilized cyanobacteria for on-line trace metal enrichment by flow injection atomic absorption spectrometry, Anal. Chem., 66, 3632-3638.
  • [18.] Pirszel J., Pawlik B., Skowroński T., 1995, Cation-exchange capacity of algae and cyanobacteria: a parameter of their sorption abilities, J. Ind. Microbiol., 14, 319-322.
  • [19.] Revis N. J. P., Merks A .G. A., 1989, Heavy metal uptake by plankton and other seston particles, Chem. Spec. Bioavailab., 1, 31-37.
  • [20.] Röchricht M., Weppen P., Deckwer W. D., 1990, Abtrennung von Schwermetallen aus Abwasseströmen- Biosorption im Vergleich zu herkömmlichen Verfahren, Chem. Ing. Tech., 62, 582-583 (in German).
  • [21.] Skowroński T., 1984a, Energy-dependent transport of cadmium by Stichococcus bacillaris, Chemosphere, 13, 1379-1384.
  • [22.] Skowroński T., 1984b, Uptake of cadmium by Stichococcus bacillaris, Chemosphere, 13, 1385-1389.
  • [23.] Skowroński T., 1986, Adsorption of cadmium on green microalga Stichococcus bacillaris, Chemosphere, 15, 69-76.
  • [24.] Staub R., 1961, Untersuchungen an der Blaualga Oscillatoria rubescens DC, Schweiz. Z. Hydrol., 23, 83-198 (in German).
  • [25.] Vuceta J., Morgan J. J., 1978, Chemical modelling of trace metals in fresh waters: role of complexation and adsorption, Environ. Sci. Technol., 12, 1302-1307.
  • [26.] Wehrheim B., Wettern M., 1994, Comparative studies of the heavy metal uptake of whole cells and diffirent types of cell walls from Chlorella fusca, Biotech. Lett., 8, 227-232.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0025-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.