PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Tri-tert-butoksysilanotiolanowe kompleksy cynku(II), kadmu(II) i kobaltu(II) jako modele koordynacji jonu cynku w miejscu aktywnym dehydrogenazy alkoholowej i niektórych innych enzymów

Autorzy
Identyfikatory
Warianty tytułu
EN
Zinc(II), cadmium(II) and cobalt(II) tri-tert-butoxysilanethiolate complexes as models of the active site of alcohol dehydrogenase and some other enzymes
Języki publikacji
PL
Abstrakty
EN
Zinc is ubiquitous in living organisms and second only to iron among the transition metals. Catalytic zinc sites have been found in all six classes of enzymes. Liver alcohol dehydrogenase (EC 1.1.1.1, LADH, Fig. 1) is a zinc enzyme, which catalyzes reversible oxidation of alcohols to aldehydes utilizing as a co-substrate NAD+. The mechanism of an action of the enzyme is summarized by an equation: R1R2CHOH + NAD+ = R1R2CO + NADH + H+ The coordination of zinc in LADH is usually described as pseudotetrahedral but there were several findings supporting penta-coordination of zinc during the catalytic cycle (Fig. 1 and 2) [1–7]. Studies on synthetic analogues of functional sites of the enzymes are used to elucidate the substrate – metal interactions [8]. Tri-tert-butoxysilanethiol which was used as a ligand to model cysteinate – metal ion centers has several advantageous features. It secures formation of mononuclear transition-metal complexes, exhibits resistance towards hydrolysis, and additionally its pKa value is close to that of cysteine mercapto group [9–11]. Over 20 tri-tertbutoxysilanethiolate complexes with MS2NO2 (M = transition metal) cores were synthesized to model the enzymatic centre of alcohol dehydrogenase, including complexes with water, methanol and ethanol (Fig. 5). Crystal structures of zinc(II), cobalt(II), cadmium(II), and manganese(II) complexes were determined and compared to the structures of LADH [12–17]. Structural features of zinc(II) and cadmium(II) complexes were analyzed (Fig. 9, Tab. 2) [15]. 113Cd CP/MAS NMR spectra of tri-tert-butoxysilanethiolate cadmium(II) complexes were determined and compared with the 113Cd NMR spectra of the cadmium-substituted alcohol dehydrogenase. Solid state 113Cd NMR shifts of five-coordinate cadmium(II) complexes with the CdNO2S2 coordination core were found to be identical to that of cadmium-substituted alcohol dehydrogenase in complex with NAD+ [15,18]. The equilibrium character of the reactions between bis(bis(tri-tert-butoxysilanethiolate) cadmium(II) and nitrogen ligands, with a low equilibrium constant of heteroleptic complex formation, were proved by 113Cd NMR studies in solution [18, 19]. The electronic absorption spectra of heteroleptic cobalt(II) complexes with tri-tert-butoxysilanethiolate and imidazole ligands were measured in methanol and solid state. The equilibrium reactions in the methanolic solutions of cobalt complexes were described on the basis of the analysis of charge transfer bands S→dCo LMCT and the molecular structures of the obtained complexes [17]. EPR spectra revealed the high-spin configuration of the studied cobalt(II) compounds [17]. Quantum mechanical calculations performed on the model zinc complex indicate ca10–20% decrease in enthalpy of ethanol deprotonation due to complexation with Zn2+ [15].
Rocznik
Strony
389--411
Opis fizyczny
bibliogr. 76, rys., tab.
Twórcy
autor
  • Katedra Chemii Nieorganicznej, Wydział Chemiczny Politechniki Gdańskiej, ul. Narutowicza 11/12, 80-233, Gdańsk, anndoleg@pg.gda.pl
Bibliografia
  • [1] P.K. Agarwal, S.P. Webb, S. Hammes-Schiffer, J. Am. Chem. Soc., 2000, 122, 4803.
  • [2] R. Meijers, R.J. Morris, H.W. Adolph, A. Merli, V.S. Lamzin, E.S. Cedergren-Zeppezauer, J. Biol. Chem., 2001, 276, 9316.
  • [3] R. Meijers, H.-W. Adolph, Z. Dauter, K.S. Wilson, V.S. Lamzin, E.S. Cedergren-Zeppezauer, Biochemistry, 2007, 46, 5446.
  • [4] P.J. Baker, K.L. Britton, M. Fisher, J. Esclapez, C. Pire, M.J. Bonete, J. Ferrer, D.W. Rice, Proc. Natl. Acad. Sci. USA., 2009, 106, 779.
  • [5] Chem.-Biol. Interact. 2003, 143-144, 1.
  • [6] Cell. Mol. Life Sci. 2008, 65, 3873.
  • [7] R. Meijers, E. Cedergren-Zeppezauer, Zn-dependent, medium-chain dehydrogenases/reductases , [w:] Ed. A. Messerschmidt, W. Bode, M. Cygler, Handbook of Metalloproteins, John Wiley & Sons, Ltd., Chichester, 2004.
  • [8] W. Kaim, B. Schwederski, Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, John Wiley & Sons, Ltd., Chichester, 1994.
  • [9] R. Piękoś, W. Wojnowski, Z. Anorg. Allg. Chem., 1962, 318, 212.
  • [10] W. Wojnowski, A. Herman, Z. Anorg. Allg. Chem., 1976, 425, 91.
  • [11] A. Herman, B. Becker, W. Wojnowski, Z. Anorg. Allg. Chem., 1979, 450, 178.
  • [12] A. Kropidłowska, J. Chojnacki, B. Becker, J. Inorg. Biochem., 2007, 101, 578.
  • [13] B. Becker, A. Pladzyk, A. Konitz, W. Wojnowski, Appl. Organomet. Chem., 2002, 16, 517.
  • [14] A. Dołęga, M, Wieczerzak, K. Baranowska, Acta Crystallogr. Struct. Rep. Online, 2007, E63, m1774.
  • [15] A. Dołęga, K. Baranowska, D. Gudat, A. Herman, J. Stangret, A. Konitz, M. Śmiechowski, S. Godlewska, Eur. J. Inorg. Chem., 2009, 3644.
  • [16] A. Dołęga, A. Pladzyk, K. Baranowska, M. Wieczerzak, Inorg. Chem. Commun., 2008, 11, 847.
  • [17] A. Dołęga, A. Pladzyk, K. Baranowska, J. Jezierska, Inorg. Chim. Acta., 2009, 362, 5085.
  • [18] A. Dołęga, K. Baranowska, J. Gajda, S. Kaźmierski, M. Potrzebowski, Inorg. Chim. Acta, 2007, 360, 2973.
  • [19] A. Dołęga, M. Walewski, Magn. Reson. Chem., 2007, 45, 410.
  • [20] G. Parkin, Chem. Rev., 2004, 104, 699.
  • [21] A. Otero, J. Fernández-Baeza, A. Antińolo, J. Tejeda, A. Lara-Sánchez, Dalton Trans., 2004, 1499.
  • [22] J. Weston, Chem. Rev., 2005, 105, 2151.
  • [23] L.M. Berreau, Eur. J. Inorg. Chem., 2006, 273.
  • [24] L.M. Berreau, Comment. Inorg. Chem., 2007, 28, 123.
  • [25] G. Parkin, New J. Chem., 2007, 31, 1996.
  • [26] D. Coquière, S. Le Gac, U. Darbost, O. Sénèque, I. Jabin, O. Reinaud, Org. Biomol. Chem., 2009, 7, 2485.
  • [27] J.S. Pap, J. Kaizer, G. Speier, Coord. Chem. Rev., 2010, 254, 781.
  • [28] A. Dołęga, Coord. Chem. Rev., 2010, 254, 916.
  • [29] M. Wojnowska, W. Wojnowski, Z. Anorg. Allg. Chem., 1974, 403, 179.
  • [30] W. Wojnowski, M. Wojnowska, K. Peters, E.-M. Peters, H.G. von Schnering, Z. Anorg. Allg. Chem., 1985, 530, 79.
  • [31] W. Wojnowski, M. Wojnowska, K. Peters, E.-M. Peters, H.G. von Schnering, Z. Anorg. Allg. Chem., 1986, 535, 56.
  • [32] B. Becker, W. Wojnowski, L. Walz, K. Peters, E.-M. Peters, H.G. von Schnering, Polyhedron, 1990, 14, 1659.
  • [33] W. Wojnowski, B. Becker, L. Walz, K. Peters, E.-M. Peters, H.G. von Schnering, Polyhedron, 1992, 11, 513.
  • [34] W. Wojnowski, B. Becker, J. Sassmannshausen, K. Peters, E.-M. Peters, H.G. von Schnering, Z. Anorg. Allg. Chem., 1994, 620, 1417.
  • [35] B. Becker, K. Radacki, A. Konitz, W. Wojnowski, Z. Anorg. Allg. Chem., 1995, 621, 904.
  • [36] B. Becker, K. Radacki, W. Wojnowski, J. Organomet. Chem., 1996, 521, 39.
  • [37] M. Tesmer, M. Shu, H. Vahrenkamp, Inorg. Chem., 2001, 40, 4022.
  • [38] J. Seebacher, M. Shu, H. Vahrenkamp, Chem. Commun., 2001, 1026.
  • [39] M. Shu, R. Walz, B. Wu, J. Seebacher, H. Vahrenkamp, Eur. J. Inorg. Chem., 2003, 2502.
  • [40] M.M. Ibrahim, M. Shu, H. Vahrenkamp, Eur. J. Inorg. Chem., 2005, 1388.
  • [41] C. Kimblin, B.M. Bridgewater, D.G. Churchill, G. Parkin, Chem. Commun., 1999, 2301.
  • [42] C. Bergquist, G. Parkin, Inorg. Chem., 1999, 38, 422.
  • [43] L.M. Berreau, M.M. Makowska-Grzyska, A.M. Arif, Inorg. Chem., 2001, 40, 2212
  • [44] M.M. Makowska-Grzyska, P.C. Jeppson, R.A. Allred, A.M. Arif, and L.M. Berreau, Inorg. Chem., 2002, 41, 4872.
  • [45] L.M. Berreau, R.A. Allred, M.M. Makowska-Grzyska, A.M. Arif, Chem. Commun., 2000, 1423.
  • [46] K.J. Tubbs, E. Szajna, B. Bennett, J.A. Halfen, R.W. Watkins, A.M. Arif, L.M. Berreau, Dalton Trans., 2004, 2398.
  • [47] B. Becker, A. Dołęga, A. Konitz, W. Wojnowski, Polyhedron, 2001, 20, 949.
  • [48] M. Hassanein, I.F. Hewaidy, Z. Anorg. Allg. Chem., 1970, 373, 80.
  • [49] R.G. Pearson, R.L. Dillon, J. Am. Chem. Soc., 1953, 75, 2439.
  • [50] A. Dołęga, A. Farmas, K. Baranowska, A. Herman, Inorg. Chem. Commun., 2009, 12, 823.
  • [51] A. Dołęga, B. Becker, J. Chojnacki, A. Konitz, W. Wojnowski, Inorg. Chim. Acta, 2004, 357, 461.
  • [52] A. Dołęga, A. Ciborska, J. Chojnacki, M. Walewski, W. Wojnowski, Thermochim. Acta, 2005, 429, 103.
  • [53] A. Dołęga, A. Konitz, E. Baum, W. Wojnowski, Acta Crystallogr. Struct. Rep. Online, 2005, E61, m2582.
  • [54] A. Dołęga, K. Baranowska, Acta Crystallogr. Struct. Rep. Online, 2008, E64, m616.
  • [55] M.F. Dunn, H. Dietrich, A.K.H. MacGibbon, S.C. Koerber, M. Zeppezauer, Biochemistry, 1982, 21, 354.
  • [56] D.R. Holland, A.C. Hausrath, D. Juers, B.W. Matthews, Protein Sci., 1995, 4, 1955.
  • [57] U. Ryde, Protein Sci., 1995, 4, 1124.
  • [58] T. Vosegaard, U. Andersen, H.J. Jakobsen, J. Am. Chem. Soc., 1999, 121, 1970.
  • [59] A.S. Lipton, M.D. Smith, R.D. Adams, P.D. Ellis, J. Am. Chem. Soc., 2002, 124, 410.
  • [60] A.S. Lipton, T.A. Wright, M.K. Bowman, D.L. Reger, P.D. Ellis, J. Am. Chem. Soc., 2002, 124, 5850.
  • [61] A.S. Lipton, P.D. Ellis, J. Am. Chem. Soc., 2007, 129, 9192.
  • [62] A.S. Lipton, M.M. Morlok, G. Parkin, P.D. Ellis, Inorg. Chem., 2008, 47, 5184.
  • [63] M.F. Summers, Coord. Chem. Rev., 1988, 86, 46.
  • [64] J.E. Coleman, Methods in Enzymology, 1993, 227, 16.
  • [65] B.R. Bobsein, R.J. Myers, J. Biol. Chem., 1981, 256, 5313.
  • [66] A. Dołęga, J. Chojnacki, A. Konitz, W. Komuda, W. Wojnowski, Acta Crystallogr. Struct. Rep. Online, 2006, E62, m636.
  • [67] F.H. Allen, Acta Crystallogr., 2002, B58, 380; Cambridge Structural Database, Wersja 5.30, listopad 2008, uaktualnienie 4 Września 2009.
  • [68] J. Bąkowicz, A. Kropidłowska, I. Turowska-Tyrk, B. Becker, Acta Crystallogr. Struct. Rep. Online, 2007, E63, m973.
  • [69] B. Becker, A. Zalewska, A. Konitz, W. Wojnowski, Polyhedron, 2001, 20, 2567.
  • [70] A. Dołęga, K. Baranowska, A. Pladzyk, K. Majcher, Acta Crystallogr., 2008, C64, m259.
  • [71] K.E. Hightower, C.A. Fierke, Curr. Opin. Chem. Biol., 1999, 3, 176.
  • [72] S.F. Sousa, P.A. Fernandes, M.J. Ramos, Biophys. J., 2005, 88, 484.
  • [73] N.M.G.M. Appels, J.H. Beijnen, J.H.M, Schellens, Oncologist, 2005 10, 565.
  • [74] D. Jozic, G. Bourenkov, N.-H. Lim, R. Visse, H. Nagase, W. Bode, K. Maskos, J. Biol. Chem., 2005, 280, 9578.
  • [75] a) A. Pladzyk, K. Januszewicz, K Baranowska, A. Sikorski, A. Konitz, K. Majcher, A. Dołęga, Zinc(II) and cobalt(II) tri-tert-butoxysilanethiolates with chelating 2-(2-hydroxyethyl)pyridine ligand, XVIth International Winter School on Coordination Chemistry, Karpacz, 2008, 113; b) A. Dołęga, A. Pladzyk, K. Baranowska, Tri-tert-butoksysilanotiolany cynku(II) i kobaltu(II) z chelatującą 2-(2-hydroksyetylo)pirydyną jako dodatkowym ligandem. Struktura i widma elektronowe. LII Zjazd Polskiego Towarzystwa Chemicznego i Stowarzyszenia In¿ynierów i Techników Przemysłu Chemicznego, Łódź, 2009, 162.
  • [76] A. Dołęga, K. Baranowska, Ż. Jarząbek, Acta Crystallogr. Struct. Rep. Online, 2008, E64, m1515.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUS8-0002-0031
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.