PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling and experimental investigations of BLDC disk - typemotor for fractional horsepower electric drives

Autorzy
Identyfikatory
Warianty tytułu
PL
Modelowanie i badania eksperymentalne dyskowego silnika typu BLDC dla napędów ułamkowej mocy
Języki publikacji
EN
Abstrakty
EN
The paper describes brushless permanent magnet disk-type motor model useful for simulation in Matlab/Simulink. Some of BLDC disktype motor parameters necessary for the Matlab/Simulink model were determined by using 3D FEM calculations. These parameters take into account the damage of a part of magnetic material structure resulting from the punching process and coiling the ferromagnetic stripes creating the torus-shaped stator core. The adequacy of the model has been checked in the conditions of the load torque change by comparison of measurement and simulation results.
PL
Artykuł opisuje model bezszczotkowego silnika dyskowego z magnesami trwałymi, który jest użyteczny do zastosowania i symulacji w programie Matlak/Simulink. Niektóre z parametrów silnika BLDC, niezbędne dla modelu określono z wykorzystaniem trójwymiarowych obliczeń metodą elementów skończonych. Parametry te uwzględniają zniszczenie części struktury materiału magnetycznego wynikające z procesu wykrawania oraz zwijania taśmy tworzącej rdzeń stojana w kształcie torusa. Adekwatność modelu została potwierdzona w warunkach zmiany momentu obciążenia, poprzez porównanie wyników symulacji oraz pomiarów.
Rocznik
Strony
26--42
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
autor
autor
Bibliografia
  • [1] Boglietti A., Cavagnino A., Lazzari M., Pastorelli M., Efect of punch process on the magnetic and energetic properties of soft magnetic material, Proc. IEEE International Conference Electric Machines and Drives IEMDC, 2001, 396-399
  • [2] Moses A. J., Derebasi N., Loisos G., Shoppa A., Aspects of the cut-edge effect stress on the power loss and flux density distribution in electrical steel sheets, JMMM, 215-216, 2000, pp. 690-692
  • [3] Binns K. J., Lawrenson P. J., Trowbridge C. W., The analytical and numerical solution of electric and magnetic field. Chichester, New York: John Wiley & Sons, 1992
  • [4] Zhilicher Y. N., Calculation of 3D magnetic field of disk-type micromotors by integral transformation method, IEEE Trans. Magnetics, vol. 32, No 1, 1996, pp. 248-253
  • [5] Bianchi N., Alberti L, MMF harmonic effect on the embedded FE analytical computation of PM motors", IEEE Trans. Industry Applications, vol.46, 2010, pp. 812-820
  • [6] Cvetkovski G., Petkovska L, Gair S. , Dynamic simulation of PM disc motor using MATLAB/Simulink coupled with Finite Element Method, Proc. IEEE 13th European Conference on Power Electronics and Applications, 2009, pp. 1-10
  • [7] Wiak S., Rosiak W., Dems M., Powierza J., Dynamics of Power transmission system with brushless DC motor with PID/Fuzzy controller, Proc. 13th International Conference System Modeling and Control, 2009, in CD-ROM
  • [8] Boglietti A., Pastorelli M., Induction and synchronous reluctance motors comparison, Proc. IEEE 34th Annual Conference IECON, 2008, 2041-2044
  • [9] Chen A., Nielssen R., Nysveen A., Performance comparisons among radial-flux, multistage axial-flux, and three-phase transverse-flux PM machines for downhole applications, IEEE Trans. Industry Applications, vol. 46, No 2, 2010, pp. 779-789
  • [10] Zhang Z., Profumo F., Teconi A., Analysis and experimental validation of performance for an axial flux permanent magnet brushless DC motor with powder iron metallurgy cores, IEEE Trans. Magnetics, vol. 33, No 5, 1997, pp. 4194-4197
  • [11] Patterson G., Koseki T., Aoyama Y., Sako K., Simple modeling and prototype experiments for a new high-thrust, low-speed permanent magnet disk motor, Proc. IEEE International Conference on Electrical Machines and Systems, 2009, pp. 1-6
  • [12] Caricchi F., Crescimbini F., Santini E., Axial-flux electromagnetic differential induction motor, Proc. IET Conferences 7th Conferences on Electrical Machines and Drives, 1995, pp. 1-5
  • [13] Aydin M., Huang S., Lipo T. A., Design, analysis and control of a hybrid field-controlled axial-flux permanent-magnet motor, IEEE Trans. Industrial Electronics, vol. 57, No 1, 2010, pp. 78-87
  • [14] Afonin A., Multi-layer electromechanical energy converters, Electromotion, No 3, 1996, pp. 111-115
  • [15] Jahns T. M., Soong W. L, Pulsating torque minimalization techniques for permanent magnet AC motor drives - a reviews, IEEE Trans. Industrial Electronics, vol. 43, No 2, 1996, pp. 321-330
  • [16] Simir B. N., Ertan B. H., A comparision between the torque production capabilities of axial flux and radial flux type of brushless DC motors for adjustable speed drives, Proc. 3dr Int. Symp. On Advanced Electromechanical Motion Systems, 1999, pp. 119-123
  • [17] Zhu Z. Q., Chen J. T., Pang Y., Howe D., Iwasaki S., Deadhar R., Analysis of a novel multi-tooth flux-switching PM brushless AC machine for high torque direct-drive applications, IEEE Trans. Magnetics, vol.44, 2008, pp. 4313-4316
  • [18] Nasir Uddin M., Islam Chy Md. M., A novel-fuzzy-logic-controller-based torque and flux controls of IPM synchronous motor, IEEE Trans. Industry Applications, vol.46, 2010, pp. 1220-1229
  • [19] Cvetkovski G., Petkovska L, Gair S.,Torque analysis of axial field PM synchronous motor for EV, Proc. SPEEDAM Conf., 2006, pp. 18-21
  • [20] Cvetkovski G., Petkovska L, Torque evaluation of permanent magnet DC commutator motor Rusing FEM data, Proc. IEEE Conferences 43rd UPEC, 2008, pp. 1-5 '
  • [21] Basu K., Siva Prasad J. S., Narayanan G., Minimalization of torque ripple In PWM AC driver, IEEE Trans. Industrial Electronics, vol. 56, No 2, 2009, pp. 553-558
  • [22] Sun Z., Wang J., Jewell G. W., Howe D., Enhanced optimal torque control of fault-tolerant PM machine under flux-weakening operation, IEEE Trans. Industrial Electronics, vol. 57, No 1, 2010, pp. 344-353
  • [23] Desai P. C, Krishnamurthy M., Schofield N., Emadi A., Novel switched reluctance machine configuration with higher number of rotor poles than stator poles: concept to implementation, IEEE Trans. Industrial Electronics, vol. 57, No 2, 2010, pp. 649-659
  • [24] Fei W., Luk P. C. K., A new technique of cogging torque suppression in direct-drive permanent-magnet brushless machines, IEEE Trans. Industry Applications, vol.46, 2010, pp. 1332-1340
  • [25] Inacio D., Inacio S., Valtchev S., Ventom Neves M., Martins J. F. A., Leao Rodrigues A., Conventional and HTS disk motor with pole variation control, Proc. POWERENG Conference, 2009, pp. 513-518
  • [26] Jiang S., Chau K., Chan C./'Spectral analysis of a new six-phase pole-changing induction motor drive
  • [27] Kelly J., Strangas E., Miller J., Control of a continuously operated pole-changing induction machine, Proc. of IEEE International Electric Machines and Drive Conference, 2003
  • [28] Profumo F., Zhang Z., Tenconi A., Axial flux machine drives: A new viable solution for electric vehicles, IEEE Trans. Industrial Electronics, vol.44, No 1, 1997, pp. 39-45.
  • [29] Wang-Hay Tsui K., Chow Cheung N., Chi-Wah Yuen K., Novel modeling and damping technique for hybrid stepper motor, IEEE Trans. Industrial Electronics, vol. 56, No 1, 2009, pp. 202-211
  • [30] Xia C, Li Z., Shi T., A control strategy for four-switch three-phase brushless DC motor using single current sensor, IEEE Trans. Industrial Electronics, vol. 56, No 6, 2009, pp. 2058-2066
  • [31] Raca D., Garcia P., Reigosa D. D., Briz F., Lorenz R. D..Carrier-signal selection for sensorless control of PM Synchronous machines at zero and very low speeds, IEEE Trans. Industry Applications, vol. 46, No 1, 2010, pp. 167-178
  • [32] El-Rafaie A. M., Fractional-slot concentrated-windings synchronous permanent magnet machines: opportunities and challenges, IEEE Trans. Industrial Electronics, vol. 57, No 1, 2010, pp. 107-121
  • [33] Moncada R. H., Tapia J. A., Jahns T. M., Analysis of negative-saliency permanent-magnet machines, IEEE Trans. Industrial Electronics, vol. 57, No 1, 2010, pp. 122-127
  • [34] Foo G., Rahman M. F., Sensorless direct torque and flux-controlled IPM synchronous motor drive at very low speed without signal injection", IEEE Trans. Industrial Electronics, vol. 57, No 1, 2010, pp. 395-403
  • [35] Vijayakumar K., Karthikeyan R., Paramasivam S., Arumugam R., Srinivas K. N., Switched reluctance motor modeling, design, simulation, and analusis: A comprehensive review, IEEE Trans. Magnetics, vol.44, 2008, pp. 2605-4615
  • [36] Shimizu H., Harada J., Bland C, Kawakami K., Chan L., Advanced concepts in electric vehicle design, IEEE Trans. Industrial Electronics, vol. 44, No 1, 1997, pp. 14-18
  • [37] Geng C, Mostefai L., Denai M., Hori Y., Direct yaw-moment control of an iniwheel-motored electric vehicle based on body slip angle fuzzy observer, IEEE Trans. Industrial Electronics, vol. 56, No 5, 2009, pp. 1411-1419
  • [38] Casadei D., Mengoni M., Serra G., Tani A., Zarri L., A control scheme with energy saving and DC-link overvoltage rejection for for electric vehicles, IEEE Trans. Industrial Electronics, vol.50, 2003, pp. 123-131 induction motor driver of electric vehicles, IEEE Trans. Industry Applications, vol.46, 2010, pp. 1436-1446
  • [39] Lipeng Z., Bingnan Q., Cheng L, Torque behavior of electric vehicle change mode drive system, Proc. of Int. Conf. on Computing, Control and Industrial Engineering, 2010, pp.87-90
  • [40] Bertoluzzo M., Buja G., Pavoni A., Characterization and improved control of a brushless DC driver with in-wheel motor, Proc. of Int. Conf. Power Electronic and Motion Control, 2008, pp.1491-1496
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ5-0050-0065
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.