PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Temperature Programmed Desorption of Pyridine and 2,6-Dimethylpyridine from Differently Pretreated Pd/Al2O3 Catalysts

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The temperature programmed desorption (TPD) of pyridine and 2,6-dimethylpyridine from alumina and two alumina-supported palladium catalysts of different metal loadings (0.3 and 2.77 wt.% Pd) confirmed the presence of strong acid sites in the samples subjected to high temperature reduction at 600°C. Roughly similar amounts of both organic bases were desorbed from the catalysts which underwent similar pretreatments. However, 2,6-dimethylpyridine appears less strongly bonded than pyridine to Lewis acid sites in alumina, apparently because of some steric hindrance produced by the presence of methyl substituents in 2- and 6-position to the nitrogen lone pair. Thus, pyridine is better suited for probing evolution of Lewis acidity in alumina, brought about by high temperature reduction at 600°C.With increasing temperature during thermodesorption, both organic bases adsorbed on palladium-containing samples undergo transformation, leading to desorption of several products, among which hydrogen and nitrogen predominate. Introduction of increasing amounts of palladium to alumina makes the acidity probing difficult, because a considerable part of adsorbed organic base is decomposed on metal sites. Decomposition of pyridine and 2,6-dimethylpyridine may serve as a convenient probe of availability of palladium surface. After high temperature reduction of Pd/Al2O3 a considerable part of Pd surface is blocked by support species.
Rocznik
Strony
1953--1959
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
  • Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, PL-01224 Warszawa, Poland
  • Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, PL-01224 Warszawa, Poland
  • Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyñski University, ul. Dewajtis 5, PL-01815 Warszawa, Poland
Bibliografia
  • 1. Malinowski S. and Marczewski M., in Catalysis, (Specialist Periodical Reports, The Royal Society of Chemistry, Cambridge), Vol. 8, 107 (1989).
  • 2. Amenomiya Y., Chenier J.H.B and Cvetanovič R.J., J. Phys. Chem., 68, 52 (1964).
  • 3. Gorte R.J., Catal. Lett., 62, 1 (1999).
  • 4. Knözinger H., in „Handbook of Heterogeneous Catalysis“ (G. Ertl, H. Knözinger, and J. Weitkamp, Eds.), Vol. 2, Chap. 3.2.3.3., p. 706, Wiley-VCH, Weinheim, 1997.
  • 5. Kijeński J. and Baiker A., Catal. Today, 5, 1 (1989).
  • 6. Skotak M. and Karpiński Z., Polish J. Chem., 75, 839 (2001).
  • 7. Skotak M., Łomot D. and Karpiński Z., Appl. Catal A: General, 229, 103 (2002).
  • 8. Skotak M., Kijeński J. and Karpiński Z., Polish J. Chem., 77, 757 (2003).
  • 9. Skotak M., Karpiński Z., Juszczyk W., Pielaszek J., Kępiński L., Kazachkin D.W., Kovalchuk V.I., and d’ltri J.L., J. Catal., accepted.
  • 10. Peri J.B.,J. Phys. Chem., 69, 220 (1965).
  • 11. Pines H. and Haag W., J. Am. Chem. Soc., 82, 497 (1960).
  • 12. Knözinger H. and Ratnasamy P., Catal. Rev. Sci. Eng., 17, 31 (1978).
  • 13. Morterra C. and Magnacca G., Catal. Today, 27,497 (1996).
  • 14.Busca G., Catal. Today. 41, 191 (1998).
  • 15.Benesi H.A., J. Catal., 28, 176 (1973).
  • 16. Knozinger H. and Stolz H., Ber. Bunsenges. Phys. Chem. 75,1055 (1971).
  • 17. Aramendía M.A., Borau V., Jiménez C., Marinas J.M., Porras A. and Urbano F.J., Rapid Commun. Mass Spectrom., 8, 599 (1994).
  • 18. Haneda M., Joubert E., Ménézo J.-C., Duprez D., Barbier J., Bion B., Daturi M., Saussey J., Lavalley J.-C. and Hamada H., Phys. Chem. Chem.Phys., 3,1366 (2001).
  • 19. Satsuma A., Kamiya Y., Westi Y. and Hattori T., Appl. Catal. A: General, 194-195,253 (2000).
  • 20. Kishi K„ Kikui F. and Ikeda S., Surf. Set, 99,405 (1980).
  • 21.Inamura K., Inoue Y., Ikeda S. and Kishi K., Surf. Sci., 155, 173 (1985).
  • 22. Nakayama T., Inamura K., Inoue Y., Ikeda S. and Kishi K., Surf. Sci., 179,47 (1987).
  • 23. Albert M.R., Appl. Surf. Sci., 158, 120 (2000).
  • 24. Skotak M. and Karpiński Z., Chem. Eng. J., 90, 89 (2002).
  • 25. Boitiaux J.P., Cosyns J. and Vasudevan S., in: Preparation of Catalysts III (Elsevier, Amsterdam), p. 123, 1983.
  • 26. Di Nardo N.J., Avouris Ph. and Demouth J.E., J. Chem. Phys., 81, 2169 (1984).
  • 27. Grassian V.H. and Muetterties E.L., J. Phys. Chem., 90, 5900 (1986).
  • 28. Jacob P., Lloyd D.R. and Menzel D., Surf. Sci., 227, 325 (1990).
  • 29. Cohen M.R. and Merill R.P., Surf. Sci., 245, 1 (1991).
  • 30. Davies P.R. and Shukla N., Surf. Sci., 322, 8 (1995).
  • 31. Erley W., Xu R. and Hemminger J.C., Surf. Sci., 389,272 ( 1997).
  • 32. Nunney T.S., Birtill J.J. and Raval R„ Surf. Sci., 427-428, 282 (1999).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BUJ1-0024-0131
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.