PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Śledzenie stanu betonu za pomocą pomiarów przewodnictwa elektrycznego in situ

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Material health monitoring of concrete by means of in situ electrical conductivity measurements
Języki publikacji
PL
Abstrakty
PL
Dla oceny stanu trwałości betonu ważne znaczenie mają pomiary właściwości materiału to jest porowatości, przepuszczalności, współczynnika dyfuzji in situ. W tym celu pomiary przewodnictwa elektrycznego okazały się bardzo przydatne do śledzenia właściwości transportowych i rozwoju uszkodzeń wewnątrz betonu. Jednak na właściwości elektryczne betonu ma równocześnie wpływ szereg parametrów (np. hydratacja, wilgotność, zmiany temperatury) i z tego powodu pojedynczy pomiar przewodnictwa może nie pozwalać na scharakteryzowanie betonu w warunkach polowych. W artykule zaproponowano kombinację czterech pomiarów (przewodnictwo betonu, przewodnictwo cieczy w porach, wewnętrzna wilgotność i temperatura), która jest potrzebna do oceny właściwości materiału i betonu w warunkach polowych. Opracowano nowy układ do śledzenia stanu materiału w oparciu o wykorzystanie pomiarów czterech oddzielnych sensorów. Ten układ sensorów może prowadzić pomiary in situ szeregu właściwości materiału (na przykład wewnętrzną wilgotność i stężenia jonów) w betonie. Ten artykuł prezentuje sposób postępowania stosowany do opracowania prototypów trzech sensorów opartych na przewodnictwie i mierzących przewodnictwo betonu, roztworu w porach oraz względnej wilgotności.
EN
To assess the health and durability performance of concrete, in situ measurement of material properties (e.g., porosity, permeability, diffusion coefficient) is important. In this regard, electrical conductivity measurements have been shown to be effective in monitoring transport properties and damage development inside concrete. However, properties of concrete are simultaneously influences by several parameters (e.g., hydration, moisture, and temperature changes) and as such, a single measurement of conductivity may not be reliable for estimating the properties of field concrete. This paper describes that a combination of four measurements (concrete conductivity, pore solution conductivity, internal moisture or humidity, and temperature) is needed to accurately estimate the material properties of concrete in the field. A new material health monitoring system is developed based on this premise that combines the measurements from four separate sensors. This sensing system can provide an insitu measurement of several material properties (e.g., permeability, ion diffusivity) and state parameters (e.g., internal humidity, ion concentrations) of concrete. This paper presents the procedure used for the development of the prototype of three electrical conductivity-based sensor measuring concrete conductivity, pore solution conductivity, and relative humidity.
Czasopismo
Rocznik
Strony
76--92
Opis fizyczny
Bibliogr. 43 poz., il.
Twórcy
autor
  • Purdue University, School of Civil Engineering, West Lafayette, USA
Bibliografia
  • 1. F.-K. Chang, W. H. Prosser, and M. J. Schulz, Letter of Introduction from the Editors, Structural Health Monitoring, 1(1): 3-6 (2002).
  • 2. T. E. Hoerner, and M. I. Darter, lmproved Prediction Models for PCC Pavement Performance-related Specifications; Volume II: PaveSpec 3.0 User's Guide, Publication FHWARD- 00-131, Federal Highway Administration, Washington, DC 2000.
  • 3. J. Marchand, Modeling the Behavior of Unsaturated Cement Systems Exposed to Aggressive Chemical Environments, Materials and Structures, 34(238): 195-200 (2001).
  • 4. M. D. A. Thomas, and E. C. Bentz, LIFE-365 Service Life Prediction Model; Users Manual, Silica Fume Association, Lovettsville, Virginia 2001.
  • 5. F.-K. Chang, Structural Health Monitoring: A Summary Report, Proceedings of the Second International Workshop on Structural Health Monitoring, Stanford University, Stanford, California, pp. xix-xxix (1999).
  • 6. T. R. Ferragut, R. Rasmussen, M. l. Darter, D. Harrington, and M.Anderson-Wilk, Long-term Plan for Concrete Pavement Research and Technology - The Concrete Pavement Roadmap; Volume II: Tracks, Publication HRT-05-053, Federal Highway Administration, Washington, DC 2005.
  • 7. D. E.Adams, (2005). Prognosis Applications and Examples, in: Damage Prognosis for Aerospace, Civil, and Mechanical Systems, Wiley, West Sussex, England, pp. 365-384 8. W. J. Weiss, Linking Insitu Monitoring with Damage Modeling for Life-Cycle Performance Simulations of the Concrete Infrastructure, NSF Career Development Plan, National Science Foundation, Arlington, Virginia 2001.
  • 9. D. Balageas, C.-P. Fritzen, and A. Güemes, Structural Health Monitoring, ISTE Ltd, London 2006.
  • 10. F. Ansari, Fiber Optic Health Monitoring of Civil Structures, Proceedings of the First International Conference on Structural Health Monitoring and Intelligent Infrastructure, Vol. 1, Tokyo, Japan 2003.
  • 11. N. J. Carino, The Maturity Method, Handbook on Non-destructive Testing of Concrete, 2nd Ed., CRC Press LLC, Boca Raton, Florida 2004.
  • 12. J. S. Popovics, Ultrasonic Testing of Concrete Structures, Materials Evaluation, 63(1): 50-55 (2005).
  • 13. E. J. Garboczi, Permeability, Diffusivity, and Microstructural Parameters: A Critical Review, Cement and Concrete Research, 20(4): 591-601 (1990).
  • 14. B. J. Christensen, R.T. Coverdale, R. A. Olson, S. J. Ford, E. J. Garboczi, H. M. Jennings, and T. O. Mason, Impedance Spectroscopy of Hydrating Cement-based Materials: Measurement, Interpretation, and Application, Journal of the American Ceramic Society, 77(11): 2789-2802 (1994).
  • 15. A. Schießl, W. J. Weiss, J. D. Shane, N. S. Berke, T. O. Mason, S. P. and Shah, Assessing the Moisture Profile of Drying Concrete Using Impedance Spectroscopy, Concrete Science and Engineering, 2(2): 106-116 (2000).
  • 16. Z. C. Grasley, and D. A. Lange, Modeling Drying Shrinkage Stress Gradients in Concrete, Cement, Concrete and Aggregates, 26(2): 115-122(2004).
  • 17. F. F. Radjy, and D. W. Vunic, Heat Signature Testing of Concrete, Proceedings of the Structural Materials Technology - An NDT Conference, Atlantic City, New Jersey 1994.
  • 18. B. Kim, and W. J. Weiss, Using Acoustic Emission to Ouantify Damage in Restrained Fiber Reinforced Cement Mortars, Cement and Concrete Research, 33(2): 207-214 (2003).
  • 19. A. Bentur, S. Diamond, and N. S. Berke, Steel Corrosion in Concrete: Fundamentals and Civil Engineering Practice, E & FN Spon, Chapman & Hall, London 1997.
  • 20. W. J. McCarter, H. Ezirim, and M. Emerson, Properties of Concrete in the Cover Zone: Water Penetration, Sorptivity, and lonic Ingress, Magazine of Concrete Research, 48(176): 149-156 (1996).
  • 21. F. Rajabipour, W. J. Weiss, J. D. Shane, T. O. Mason, and S. P. Shah, Procedure to Interpret Electrical Conductivity Measurements in Cover Concrete during Rewetting, ASCE Journal of Materials in Civil Engineering, 17(5): 377-389 (2005).
  • 22. F. Rajabipour, W. J. Weiss, and D. Abraham, Insitu Electrical Conductivity Measurements to Assess Moisture and lonic Transport in Concrete, Advances in Concrete through Science and Engineering; Proceedings of the International RILEM Symposium, Evanston, Illinois 2004.
  • 23. P. Gu, P. Xie, and J. J. Beaudoin, Impedance Characterization of Microcracking Behavior in Fiber-reinforced Cement Composites, Cement and Concrete Composites, 15(3): 173- 180 (1993).
  • 24. D. D. L. Chung, and S. Wen, Effect of Strain and Damage on Strain-Sensing Ability of Carbon Fiber Cement, ASCE Journal of Materials in Civil Engineering, 18(3): 586-594 (2006).
  • 25. F. Rajabipour, and W. J. Weiss, Electrical Conductivity of Drying Cement Paste, Materials and Structures, in press (available online) (2006).
  • 26. H. W. Whittington, W. J. McCarter, and M. C. Forde, The Conduction of Electricity through Concrete, Magazine of Concrete Research, 33(114): 48-60(1981).
  • 27. F. Rajabipour, Insitu Electrical Sensing and Materiał Health Monitoring in Concrete Structures, Ph.D. Dissertation, Purdue University, West Lafayette, Indiana 2006.
  • 28. J. R. Macdonald, and W. B. Johnson, Fundamentals of Impedance Spectroscopy, Impedance Spectroscopy; Emphasizing Solid Materials and Systems, Wiley, New York, pp. 1-26 (1987).
  • 29. W. J. McCarter, S. Garvin, and N. Bouzid, Impedance Measurements on Cement Paste, Journal of Materials Science Letters, 7(10): 1056-1057 (1988).
  • 30. P. Gu, P. Xie, J.J. Beaudoin, and R. Brousseau, A.C. Impedance Spectroscopy (I): A New Equivalent Circuit Model for Hydrated Portland Cement Paste, Cement and Concrete Research, 22(5): 833-840 (1992).
  • 31. F. A. L. Dullien, Porous Media; Fluid Transport and Pore Structure, Academic Press, New York 1979.
  • 32. E. Hammond, and T. D. Robson, Comparison of Electrical Properties of Various Cements and Concretes, The Engineer, 199(Jan. 21st): 78-80 (1955).
  • 33. W. J. McCarter, G. Starrs, and T. M. Chrisp, Electrical Conductivity, Diffusion, and Permeability of Portland Cement-based Mortars, Cement and Concrete Research, 30(9): 1395-1400 (2000).
  • 34. F. Rajabipour, G. Sant, and W. J. Weiss, Development of Electrical Conductivity- Based Sensors for Health Monitoring of Concrete Materials, TRB Annual Conference, CDROM Paper# 07-1765, Transportation Research Board, Washington, DC 2007.
  • 35. T. Schmit, F. Rajabipour, and W. J. Weiss, Investigating the Use of a Diffuse Measurement Interpretation for Analyzing Insitu Electrical Measurements, Proceedings of the International ConMat Conference, Vancouver, Canada 2005.
  • 36. A. Atkinson, and A. K. Nickerson, The Diffusion of lons through Water-Saturated Cement, Journal of Materials Science, 19(9): 3068-3078 (1984).
  • 37. A. J. Katz, and A. H. Thompson, Quantitative Prediction of Permeability in Porous Rock, Physical Review B, 34(11): 8179-8181 (1986).
  • 38. B. J. Christensen, T. O. Mason, and H. M. Jennings, Comparison of Measured and Calculated Permeabilities for Hardened Cement Pastes, Cement and Concrete Research, 26(9): 1325-1334 (1996).
  • 39. M. R. Nokken, and R. D. Hooton, Using Pore Parameters to Estimate Permeability or Conductivity of Concrete, Materials and Structures, in press (available online) (2007).
  • 40. R. S. Barneyback, Alkali-silica Reactions in Portland Cement Concrete, Ph.D. Dissertation, Purdue University, West Lafayette, Indiana 1983.
  • 41. M. Penko, Some Early Hydration Processes in Cement Pastes as Monitored by Liquid Phase Composition Measurements, Ph.D. Dissertation, Purdue University, West Lafayette, Indiana 1983.
  • 42. R. C. Weast, CRC Handbook of Chemistry and Physics, 54th Ed., CRC Press, Cleveland, Ohio, pp. F-60 (1974).
  • 43. G. Sant, F. Rajabipour, P. Lura, and W. J. Weiss, Examining Time-zero and Earlyage Expansion in Pastes Containing Shrinkage Reducing Admixtures, Advances in Concrete through Science and Engineering, Proceedings of the International RILEM Symposium, Quebec, Canada 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BTB2-0036-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.