PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nowa metoda pomiaru lepkości ultracienkich warstw polimerów

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
New method for measurement of viscosity of ultrathin polymeric films
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono nową, metodę pomiaru lepkości ultracienkich warstw polimerów. Polega ona na zanurzeniu w warstwie drgającej sondy pomiarowej. Na podstawie zmian częstotliwości rezonansowej oraz fazy jej drgań można wyznaczyć wartość lepkości w funkcji głębokości zanurzenia. Grubość najcieńszej przebadanej warstwy wynosiła 30 nm, a dokładność pomiaru lepkości około 10%. Otrzymane wyniki są zgodne z przewidywaniami oraz z wynikami otrzymywanymi innymi metodami. Nowa metoda pomiarowa może być przydatna w rozwoju nowych technologii takich jak proces nanoimprint lithography.
EN
A new method of measurement viscosity of thin polymeric films is presented. The probe, which is placed on the end of the arm of the mini tuning fork (Fig. 2) is made to oscillate and than is put into the PMMA (poly(methyl methacrylate)) films. Because of the rheological properties of measured samples, the amplitude and resonant frequency are changed. Simple mathematical model of probe, which is immersed partially into a liquid and oscillates, was elaborated. Thirteen samples were examined which differed from each other by the thickness of the film and the molecular weight. The thickness of the films is from 30 nm up to 1080 nm (Tab. 1). All measured properties are depended on temperature, thickness of the film, the depth of indentation of the probe and the molecular weight of PMMA. The viscosity is lower in higher temperatures (Fig. 5) but higher with bigger molecular weight (Fig. 6). They are also lower for thicker films. The results gained from this experiment may be useful in development of nanoimprint lithography and many other branches of nanotechnology. What is more, the method gives a possibility of fast and precise measure-ment of rheological properties of many different thin films in function of temperature.
Słowa kluczowe
Wydawca
Rocznik
Strony
697--700
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wzory
Twórcy
autor
autor
  • Instytut Mikromechaniki i Fotoniki, Wydział Mechatroniki, Politechnika Warszawska, ul. Św. Andrzeja Boboli 8, 02-525 Warszawa, dariusz.jarzabek@psi.ch
Bibliografia
  • [1] Isrealachvili J. N.: Measurement of the viscosity of liquids in very thin films. JColl Interf. Sci. 1986, 110:263.
  • [2] Isrealachvili J. N.: Measurements of the viscosity of thin fluid films between two surfaces with and without adsorbed polymers. Colloid Polym. Sci., 1986, 264, 1060-1065.
  • [3] Chan D. Y. C and Horn R. G.: The drainage of thin liquid films between solid surfaces. J.Chem. Phys.,1985, 83(10).
  • [4] Dhinojwala A, Granick S: Surface Forces in the Tapping Mode: Solvent Permeability and Hydrodynamic Thickness of Adsorbed Polymer Brushes. Macromolecules, 1997, 30, 1079-1085.
  • [5] Van Alsten J., Granick S.: Molecular Tribometry of Ultrathin Liquid Films, Physical Review Letters, 1988, 61, 2570-2573.
  • [6] Montfort J. P., Hadziioannou G.: Equilibrium” and dynamic behavior or thin films of a perfluorinated polyether. J. Chem. Phys, 1988,88 (11), 7187-7196.
  • [7] Martin S. J., Ricco A. J., Hughes R. C.: Acoustics wave device for sensing in liquids. Transducer, 1987, 87 478-481.
  • [8] Martin B. A., Wenzel S. W., White R. M.: Viscosity and density sensing with ultrasonic plate waves. Sens. Actuators A: Phys., 1997, 22, 704-708.
  • [9] Muramatsu H., Suda M., Ataka T., Seki A., Tamyia E., Karube I.: Piezoelectric resonator as a chemical and biochemical sensing device. Sens. Actuators A. Phys., 1990, 21, 362-368.
  • [10] Oden P. I., Chen G. Y., Steele R. A., Warmack R. J., Thundat T.: Viscous drag measurements utilizing microfabricated cantilevers. Appl. Phys. Lett., 1996, 68 (26) 3814-3816.
  • [11] Jakoby B., Vellekoop M. J.: Viscosity sensing using a Love-wave device. Sens. Actuators A: Phys., 1998, 68, 275-281.
  • [12] Shih W. Y., Li X., Gu H., Shih W. -H., Aksay I. A.: Simultaneous liquid viscosity and density determination with piezoelectric unimorph cantilevers. J. Appl. Phys., 2001, 89 (2) 1497-1505.
  • [13] Papi M., Arcovito G., De Spirito M., Vassalli M., Tiribilli B.: Fluid viscosity determination by means of uncalibrated atomic force microscopy cantilevers. Appl. Phys. Lett., 2006, 88 194102-1 – 194102-3.
  • [14] McLoughlin N., Lee S. L., Hähner G.: Simultaneous de-termination of density and viscosity of liquids based on resonance curves of uncalibrated microcantilevers. Appl. Phys. Lett., 2006, 89, 184102-1-184102-3.
  • [15] Papi M., Maulucci G., Arcovito G., Paoletti P., Vassalli M., De Spirito M.: Detection of microviscosity by using uncalibrated atomic force microscopy. Appl. Phys. Lett., 2008, 93, 124102-1–124102-3.
  • [16] Wang W. -C., Afromowitz M., Hannaford B.: Technique for mechanical measurement using optical scattering from a micro-pipette. IEEE Trans. Biomed. Eng., 1994, 40 (March), 298-304.
  • [17] Fedorchenko A. I., Stachiv I., An-Bang Wang: The optical viscometer based on the vibrating fiber partially submerged in fluid. Sensors and Actuators B, 2009, 142, 111-117.
  • [18] Itoh S., Fukuzawa K., Hamamoto Y., Zhang H., Mitsuya Y.: Fiber Wobbling Method for Dynamic Viscoelastic Measurement of Liquid Lubricant Confined in Molecularly Narrow Gaps. Tribology Letters, 2008, 30, 177-189.
  • [19] Svintsov A. A., Trofimov O. V., and Zaitsev S. I.: Viscosity measurements of nanoimprint lithography resists with a rheological nanoindenter. J. Vac. Sci. Technol. B, 2007, 25 (6).
  • [20] Karrai K.: Lecture notes on shear and friction force detection with quartz tuning forks. Work presented at the “Ecole Thématique du CNRS” on near-field optics. March 2000, La Londe les Maures, France.
  • [21] Goldman, A. J., Cox R. G., Brenner H.: Slow viscous motion of a sphere parallel to a plane wall. Motion through a quiescent fluid., 1967, Chem. Eng. Sci. 22, 637-651.
  • [22] Hiroshima H., Atobe H.: Viscosity measurements of spin-coated UV Nanoimprint Resin. J. Vac. Sci. Technol. B, 2007, 25 (6).
  • [23] Washiya R., Mizukami M., Kurihara K., Oota E.: Nano-scale spreading of resist droplet in nanoimprint process. NNT2009, abstract P29.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW4-0103-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.