PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of cardiovascular risk in assisted living

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Disorders of the heart and blood vessels are the leading cause of health problems and death. Early detection of them is extremely valuable as it can prevent serious incidents (e.g. heart attack, stroke) and associated complications. This requires extending the typical mobile monitoring methods (e.g. Holter ECG, tele-ECG) by introduction of integrated, multiparametric solutions for continuous monitoring of the cardiovascular system. In this paper we propose the wearable system that integrates measurements of cardiac data with actual estimation of the cardiovascular risk level. It consists of two wirelessly connected devices, one designed in the form of a necklace, the another one in the form of a bracelet (wrist watch). These devices enable continuous measurement of electrocardiographic, plethysmographic (impedance-based and optical-based) and accelerometric signals. Collected signals and calculated parameters indicate the electrical and mechanical state of the heart and are processed to estimate a risk level. Depending on the risk level an appropriate alert is triggered and transmitted to predefined users (e.g. emergency departments, the family doctor, etc.).
Rocznik
Strony
231--244
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
autor
autor
autor
autor
autor
  • Gdańsk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Biomedical Engineering, Narutowicza 11/12, 80-233 Gdansk, Poland, jaolel@biomed.eti.pg.gda.pl
Bibliografia
  • [1] www.americaheart.org/statistics, (2011).
  • [2] Kaczmarek, M., Rumiński, J., Bujnowski, A. (2011). Multimodal platform for continuous monitoring of elderly and disabled. Proc. of the Federated Conference on Computer Science and Information Systems 2011, IEEE Xplore, 393-400.
  • [3] Yan, L., Bae, J., Lee, S., Roh, T., Song, K., Yoo, H.-J.A. (2011). 3.9 mW 25-Electrode Reconfigured Sensor for Wearable Cardiac Monitoring System. IEEE Journal of Solid-State Circuits, 46(1), 353-364.
  • [4] Jung, J. H., et al. (2007). Estimation of the blood pressure using arterial pressure-volume model. In Proceed. 6th International Special Topic Conference on ITAB, Tokyo.
  • [5] Cox, R.H. (1968). Wave propagation through a Newtonian fluid contained within a thick-walled, viscoelastic tube. Biophys J., 8, 691-709.
  • [6] Marcinkevics, Z., Greve, M., Aivars, J.I., Erts, R., Zehtabi, A.H. (2009). Relationship between arterial pressure and pulse wave velocity using photoplethysmography during the post-exercise recovery period. Acta Univesitatis Latviensis: Biology, 753, 59-68.
  • [7] Omron (2012). Portable, cordless, single-channel ECG Monitor, Model HCG-801, http://www.omron-healthcare.com/en/product/electro_cardiograph/HCG-801-E.html.
  • [8] Oresko, J.J., et al. (2010). A Wearable smartphone-based platform for real-time cardiovascular disease detection via electrocardiogram processing. IEEE Trans. on ITB, 14(3), 734-740.
  • [9] Catherwood, P.A. (2010). ECG Motion Artefact Reduction Improvements of a Chest-based Wireless Patient Monitoring System. Computing in Cardiology, 37, 557-560.
  • [10] Malmivuo, J., Plonsey, R. (1995). Bioelectromagnetism - Principles and applications of bioelectric and biomagnetic fields. Oxford Univ. Press.
  • [11] Skalski A., Turcza P. (2011). Heart segmentation in echo images. Metrol. Meas. Syst., 18(2), 305-314.
  • [12] Lewandowska, M., Wtorek, J., Bujnowski, A., Mierzejewski, L. (2010). Monitoring of CRT by means of impedance multiple measurements - simulation studies. Journal of Physics: Conference Series, 224, 012162.
  • [13] Wtorek, J. (2003). Impedance techniques in medicine. GUT Publishing Office. Monographs Series, 43, Gdansk, Poland.
  • [14] Wtorek, J., Poliński, A. (1995). Examination of impedance cardiography properties-FEM model studies. Biomedical Sciences Instrumentation, 31, 77-82.
  • [15] Wtorek J. (2003). Spatial sensitivity the conductivity changes of a four-electrode probe. Metrol. Meas. Syst., 10(1), 3-16.
  • [16] Geselowitz, D.B. (1971). An application of electrocardiographic lead theory to impedance plethysmography. IEEE Trans. Biomed. Eng., BME, 18(1), 38-41.
  • [17] Arridge, S.R., Hebden, J.C. (1997). Optical imaging in medicine: II. modelling and reconstruction. Phys. Med. Biol., 42(5), 841-853.
  • [18] Trybuła, A. (2009). An application of diffusive optical tomography in functional examination of organs. PhD Thesis, Warsaw University of Technology. (in Polish)
  • [19] Santos, J., Ramos, P.M. (2011). DSPIC-based impedance measuring instrument. Metrol. Meas. Syst., 18(2), 185-198.
  • [20] Tomczyk, K. (2011). Procedure for correction of the ECG signal error introduced by skin-electrode interface. Metrol. Meas. Syst., 18(3), 461-470.
  • [21] Wtorek, J., et al. (2010). Simultaneous monitoring of heart performance and respiration activity. In Proceed. of the 3rd IEEE Conference on HSI, Rzeszów, Poland, 661-665.
  • [22] Badano, L.P., et al. (2007). Left ventricular electromechanical delay in patients with heart failure and normal QRS duration and in patients with right and left bundle branch block. Europace, 9, 41-47.
  • [23] AsCARD, producer home page: http://www.aspel.com.pl.
  • [24] Polak, A.G., et al. (2010). Telemedical system “Pulmotel-2010” for monitoring patients with chronic pulmonary diseases. Metrol. Meas. Syst., 17(4), 537-548.
  • [25] Wtorek, J., Józefiak, L., Poliński, A., Siebert, J. (2002). An Averaging Two-Electrode Probe for Monitoring Changes in Myocardial Conductivity Evoked by Ischemia. IEEE Trans. Biomed. Eng., 49(3), 240-246.
  • [26] Wtorek, J., Poliński, A. (2005). The contribution of blood-flow-induced conductivity changes to measured impedance. IEEE Trans. on Biomed. Eng., 52, 41-49.
  • [27] Hahn, J.O., et al. (2005). Adaptive Left Ventricular Ejection Time Estimation Using Multiple Peripheral Pressure Waveforms. Proceed. of the IEEE Eng. Med. Biol. 27th Ann. Conf. Shanghai, China, 2383-2386.
  • [28] Okadai, E., Firbank, M., Delpy, D.T. (1995). The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy. Phys. Med. Biol., 40, 2093-2108.
  • [29] Huang, F.-H., et al. (2011). Analysis of reflectance photoplethysmograph sensors. World Academy of Science, Engineering and Technology, 59, 1266-1269.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSW1-0097-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.