PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure evaluation of long-term aged binary Ag-Cu alloy

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: In this work there are presented microstructure investigation results of the long aged Ag-Cu alloy used for monetary production. The purpose of this work was to determine the microstructural phase changes after 30 year ageing time, with appliance of transmission electron microscopy. Mainly the possibility of spinodal decomposition process occurrence was investigated. Design/methodology/approach: The investigations were performed using optical microscopy for the microstructure determination. By mind of the transmission and scanning electron microscopy the phase determination was possible to achieve. Morphology investigation of the Ag-Cu matrix and phase identification using electron diffraction, EBSD technique and SEM phase contrast methods was applied. Findings: After the long time ageing time and plastic deformation of the material there are morphological different areas of the Agá and Cuâ phase detected. Research limitations/implications: The investigated material samples were examined metallographically using light microscope, SEM, TEM with different image techniques. The hardness was measured using the Rockwell hardness tester, also EDS microanalysis and electron diffraction was performed. Practical implications: As an implication for practice use there is the possibility of application of long term ageing for mechanical properties improvement by natural ageing method. Also the comparison of microstructure change and deformation after long term ageing can deliver a new scientific view on the processes occurred in the microstructure over a long time period - spinodal decomposition can act as an example of this. Some other investigations should be performed in the future, but the knowledge found in this research shows an interesting investigation direction, where a low cost but long term treatment operations can be applied. Originality/value: The combination of TEM investigation for silver containing alloys makes the investigation very attractive for electronic, chemical and monetary industry branches.
Rocznik
Strony
15--24
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
autor
autor
  • Division of Materials Processing Technology, Management and Computer Techniques in Materials Science, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, krzysztof.labisz@polsl.pl
Bibliografia
  • [1]P. Galenko, D. Danilov, V. Lebedev, Phase-field-crystal and Swift-Hohenberg equations with fast dynamics, Physical Review E 79 (2009) 52-56.
  • [2]T. Boehme, Investigations of Microstructural Changes in Lead-Free Solder Alloys by Means of Phase Field Theories, doctoral thesis, Berlin, 2008.
  • [3]www.personal.psu.edu
  • [4]H.X. Li, X.J. Hao, G. Zhao, S.M. Hao, Characteristics of the continuous coarsening and discontinuous coarsening of spinodally decomposed Cu-Ni-Fe alloy, Journal of Materials Science 36 (2001) 779-784.
  • [5]C.E. Cordeiro, J.B. Silva, S. Moss de Oliveira, A. Delfino, J.S. Sá Martins, Nucleation Processes Close to the Spinodal, International Journal of Thermophysics 28/4 (2007) 1269-1274.
  • [6]M. Hättestrand, P. Larsson, G. Chai, J. O. Nilsson, J. Odqvist, Study of decomposition of ferrite in a duplex stainless steel cold worked and aged at 450-500 ??C, Materials Science and Engineering A 499 (2009) 489-492.
  • [7]J. Stobrawa, Z. Rdzawski, W. Głuchowski, Microstructure and properties of nanocrystalline copper-yttria micro-composites, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 83-86.
  • [8]J. Stobrawa, Z. Rdzawski, Dispersion - strengthened nanocrystalline copper, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 35-42.
  • [9]X.Y. Sun, L. Zhen, C.Y. Xu, L.X. Lv, W.Z. Shao, X.D. Sun Mössbauer spectrometry study of early stage spinodal decomposition in Fe-Cr-Co alloy under high magnetic field, Materials Letters 63 (2009) 64-65.
  • [10]K. Labisz, M. Krupiński, L.A. Dobrzański, Phases morphology and distribution of the Al-Si-Cu alloy, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 309-316.
  • [11]L.A. Dobrzański, M. Krupiński, K. Labisz, Derivative thermo analysis of the near eutectic Al-Si-Cu alloy, Archives of Foundry Engineering 8 (2008) 37-40.
  • [12]L.A. Dobrzański, M. Krupiński, K. Labisz, B. Krupińska, A Grajcar, Phases and structure characteristics of the near eutectic Al-Si-Cu alloy using derivative thermo analysis, Materials Science Forum 638-642 (2010) 475-480.
  • [13]L.A. Dobrzański, K. Labisz, R. Maniara, A. Olsen, Microstructure and mechanical properties of the Al-Ti alloy with cerium addition, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 622-629.
  • [14]K.H. Lo, J.K.L. Lai, Microstructural characterisation and change in a.c. magnetic susceptibility of duplex stainless steel during spinodal decomposition, Journal of Nuclear Materials 401 (2010) 143-148.
  • [15]T. Tański, L.A. Dobrzański, K. Labisz, Investigation of microstructure and dislocations of cast magnesium alloys, Journal of Achievements in Materials and Manufacturing Engineering 42 (2010) 94-102.
  • [16]B. Krupińska, K. Labisz, L.A. Dobrzański, Z. Rdzawski, Microstructure investigation cast zinc alloys modified with Ce, La, St, Ti, B, Journal of Achievements in Materials and Manufacturing Engineering 42 (2010) 50-57.
  • [17]J. Wang, H. Zou, C. Li, S. Qiub, B. Shen, The spinodal decomposition in 17-4PH stainless steel subjected to long-term aging at 50 °C, Materials Characterization 59 (2008) 587-591.
  • [18]Z. R. Liu, H. Gao, A differential cluster variation method for analysis of spinodal decomposition in alloys, The European Physical Journal B 37/3 (2004) 369-374.
  • [19]K. Shen, Z.M. Yin, T. Wang, On spinodal decomposition in ageing 7055 aluminum alloys, Materials Science and Engineering A 477 (2008) 395-398.
  • [20]J.C. Zhao, M.R. Notis, Ordering Transformation and Spinodal Decomposition in Au-Ni Alloys, Metallurgical And Materials Transactions 30 (1999) 707-716.
  • [21]S. Rusz, K. Malanik, Refining of structure of the alloy AlMn1Cu with use of multiple severe plastic deformation, Journal of Achievements in Materials and Manufacturing Engineering 27/2 (2008) 167-178.
  • [22]M.B. Kannan, Influence of microstructure on the in-vitro degradation behaviour of magnesium alloys, Materials Letters 64 (2010) 739-742.
  • [23]T. Tański, L.A. Dobrzański, R. Maniara, Microstructures of Mg-Al-Zn and Al-Si-Cu cast alloys, Journal of Achievements in Materials and Manufacturing Engineering 38/1 (2010) 64-71.
  • [24]M. Goral, G. Moskal, L. Swadzba, Gas phase aluminising of TiAl intermetallics, Journal of Achievements in Materials and Manufacturing Engineering 20 (2007) 443-446.
  • [25]D. Ovono Ovono, I. Guillot, D. Massinon, The microstructure and precipitation kinetics of a cast aluminium alloy, Scripta Materialia 55 (2006) 259-262.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BSL7-0052-0022
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.